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Abstract

Object recognition is a natural process of the human brain performed in the visual cor-
tex and relies on a binocular depth perception system that renders a three-dimensional
representation of the objects in a scene. Hitherto, computer and software systems are
been used to simulate the perception of three-dimensional environments with the aid of
sensors to capture real-time images. In the process, such images are used as input data for
further analysis and development of algorithms, an essential ingredient for simulating the
complexity of human vision, so as to achieve scene interpretation for object recognition,
similar to the way the human brain perceives it.
The rapid pace of technological advancements in hardware and software, are continuously
bringing the machine-based process for object recognition nearer to the inhuman vision
prototype. The key in this field, is the development of algorithms in order to achieve robust
scene interpretation. A lot of recognisable and significant effort has been successfully
carried out over the years in 2D object recognition, as opposed to 3D.
It is therefore, within this context and scope of this dissertation, to contribute towards
the enhancement of 3D object recognition; a better interpretation and understanding of
reality and the relationship between objects in a scene. Through the use and application
of low-cost commodity sensors, such as Microsoft Kinect, RGB and depth data of a scene
have been retrieved and manipulated in order to generate human-like visual perception
data. The goal herein is to show how RGB and depth information can be utilised in order
to develop a new class of 3D object recognition algorithms, analogous to the perception
processed by the human brain.
This dissertation presents my original work for the simulation of human vision in 3D
objection recognition, focusing in the following three areas:
3D Human Recognition: The first area addresses the problem of localisation and spatial
extent determination of a human in three-dimensional space. To this end, a Conditional
Random Field (CRF) pairwise energy function is defined for the segmentation task using
features from both RGB and depth space. Furthermore, the maximum a-posteriori (MAP)
labelling is determined in polynomial time by minimising the energy function with the use
of graph cuts. The novelty of this proposed approach is that no user interaction is required
for determining the segmentation, as opposed to related work in the field. Moreover, the
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Abstract

segmentation is computed within the detection box, for which the latter is determined using
HOG-based features. In conclusion, my results and findings are then compared against
state–of–the–art approaches.
3D Human Motion Understanding: In the second part, a new approach is introduced
for capturing and tracking the shape variations of a human instance in RGBD space.
The proposed methodology consists of two components: (1) a workflow that enhances the
accuracy of an existing octree-based foreground estimation algorithm in order to determine
the shape of a human body and (2) the use of the Minimum Volume Enclosing Ellipsoid
(MVEE) algorithm for capturing the spatio-temporal changes of the moving object in a
3D scene.
Preparatory work for a Potential multi-Kinect object recognition system: Finally, in the last
part of this dissertation an evaluation workflow is presented for assessing the reliability
of merging point clouds generated from different Kinect sensors. The proposed three-step
evaluation pipeline, could be very useful for future object recognition applications; based
on multiple Kinect sensors, when accurate combination of 3D datasets is required from
different sensors.
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Zusammenfassung

Die Objekterkennung ist ein natürlicher Prozess im Menschlichen Gehirn. Sie findet im
visuellen Kortex statt und nutzt die binokulare Eigenschaft der Augen, die eine drei-
dimensionale Interpretation von Objekten in einer Szene erlaubt. Kameras ahmen das
menschliche Auge nach. Bilder von zwei Kameras, in einem Stereokamerasystem, werden
von Algorithmen für eine automatische, dreidimensionale Interpretation von Objekten in
einer Szene benutzt.
Die Entwicklung von Hard- und Software verbessern den maschinellen Prozess der Objek-
terkennung und erreicht qualitativ immer mehr die Fähigkeiten des menschlichen Gehirns.
Das Hauptziel dieses Forschungsfeldes ist die Entwicklung von robusten Algorithmen für
die Szeneninterpretation. Sehr viel Aufwand wurde in den letzten Jahren in der zweidimen-
sionale Objekterkennung betrieben, im Gegensatz zur Forschung zur dreidimensionalen
Erkennung.
Im Rahmen dieser Arbeit soll demnach die dreidimensionale Objekterkennung weiterent-
wickelt werden: hin zu einer besseren Interpretation und einem besseren Verstehen von
sichtbarer Realität wie auch der Beziehung zwischen Objekten in einer Szene. In den
letzten Jahren aufkommende low-cost Verbrauchersensoren, wie die Microsoft Kinect,
generieren Farb- und Tiefendaten einer Szene, um menschenähnliche visuelle Daten zu
generieren. Das Ziel hier ist zu zeigen, wie diese Daten benutzt werden können, um eine
neue Klasse von dreidimensionalen Objekterkennungsalgorithmen zu entwickeln - analog
zur Verarbeitung im menschlichen Gehirn.
Diese Dissertation präsentiert meine Arbeit zur Simulation von menschlicher Wahrneh-
mung in dreidimensionaler Erkennung, fokussiert auf die drei folgenden Gebiete:
Dreidimensionale Erkennung von Menschen: Das erste Teilgebiet behandelt die Proble-
matik des Lokalisierens und der Erkennung räumlicher Ausdehnung von Menschen im
dreidimensionalen Raum. Dafür wrd eine Conditional Random Field (CRF) Energiefunk-
tion definiert, die der Segmentierung dient und Eigenschaften von Farb- und Tiefenraum
benutzt. Zusätzlich wird die Maximium–A–Posteriori Klassifikatorzuordnung in poly-
nomieller Zeit generiert, mithilfe von Graph Cuts. Die Neuheit bei diesem Verfahren
besteht darin, dass keinerlei Benutzerinteraktion benötigt wird, im Gegensatz zu anderen
Verfahren. Weiterhin wird die Segmentierung innerhalb einer Detektionsbox vollzogen,
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welche mittels HOG-basierter Eigenschaften bestimmt wird. Abschließend werden meine
Ergebnisse mit den Stand der Technik verglichen.
3D Human Motion Understanding: Im zweiten Teil wird ein neuer Ansatz vorgestellt, der
die Erscheinungsvarianten von Menschen in einem Farb- und Tiefenraum erfassen und
verfolgen kann. Die vorgeschlagene Methode besteht aus zwei Komponenten: erstens, aus
einem Prozess der die Genauigkeit eines existierenden Octree-basiertem dreidimensiona-
len Hintergrundschätzer verbessert, um die Form eines Menschen zu erkennen. Zweitens,
um aus der Verwendung des Algorithmus Minimum Volume Enclosing Ellipsoid (MVEE)
räumlich-zeitliche Veränderungen eines sich bewegenden Objektes im dreidimensionalen
Raum zu erfassen.
Vorbereitende Arbeiten für ein potentielles Multi-Kinect-Objekt-Erkennungssystem: Sch-
ließlich wird ein Arbeitsablauf für die Evaluierung der Zuverlässigkeit von zusammen-
geführten Punktwolken, verschiedener Kinect-Sensoren, präsentiert. Die Evaluierungspi-
peline kann für zukünftige Objekterkennungsapplikationen sehr nützlich sein. Sie basiert
auf einer akkuraten Kombination von 3D-Daten mehrerer Kinect-Sensoren.
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Chapter 1

Introduction

“Object recognition systems constitute a deeply entrenched
and omnipresent component of modern intelligent systems.“

– A. Andreopoulos and John K. Tsotsos [1]

1.1 Motivation and Objectives
Object recognition is the ability to perceive an object’s physical properties, such as shape,
colour and texture, based on some prior experience and knowledge of the object. The
range of applications span from optical character recognition, to medical imaging, bio-
metrics, defence and surveillance systems. The field of object recognition in information
technology and specifically in computer vision originated in the early 60s’, whereby sci-
entists began to investigate approaches and develop algorithms in order to distinguish
and recognise simple shapes in images. Some pioneers in the field, such as Roberts [2],
Lowe [3] and Biederman [4], marked the beginning of image-based object recognition
for intelligent systems. Likewise, a considerable amount of work has been undertaken in
order to improve and refine already esta blished methodologies in the field. For example,
a method originally devised in 1962 by Hough [5] for the field of particle physics as a
means of recognising basic geometric objects, such as lines and arcs, known as the Hough
transform, was later on extended by Duda and Hart [6] to the so-called "Generalised Hough
transform" for recognising more generalised objects.
However, an object recognition system is more than just recognising static objects in
images. An ideal system should be able to recognise non-rigid objects undergoing
temporal-dependent shape deformations. Yet, despite the progress made in algorithms
and hardware technology, existing methods in the field are not able to capture the multi-
plicity of the available representations of some deformable objects such as humans; hence,
leading contemporary recognition systems to erroneous and non-robust predictions. An
accurate machine-based vision system should therefore be able to cope with the follow-
ing process problems: viewpoint perceptiveness, illumination changes, object occlusion,
object scaling, deformation, background cluttering and intra-class variations. As a conse-
quence, dealing simultaneously with the above-mentioned issues lead us to the following
conclusion: vision is hard.
The human brain is a prototypical system that can handle the aforementioned processes for
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object recognition, effectively and promptly. Understanding the intricate functionalities of
the human brain is a complicated subject that requires interdisciplinary knowledge from
many research fields and is beyond the scope of this dissertation. Nevertheless, it should
be noted that approaches presented in this dissertation share common ground with our
brain perception mechanism. That is, the recognition of objects as a whole based on
already known patterns, a process that is naturally employed by our brain (Desolneux et
al. [7]).
In the field of machine vision systems, a lot of focused effort has been conducted in
two-dimensional (2D) perception and analysis of an object. However, depth perception
is crucial if one wants to approach the effectiveness of the human visual system. To this
end, a depth camera device is used in order to capture a scene and its objects in a three
dimensional space. Low cost commodity depth sensors such as the Microsoft Kinect and
Asus Xtion Pro Live are ideal for such purposes and have been widely used in the fields
of computer vision, machine learning and robotics. One great advantage of these sensors
is that they provide real-time RGBD information, even for untextured environments. The
depth (or disparity) map is created by receiving and analysing a speckle pattern (near–
infrared light) emitted by the infrared projector in the infrared image. This is the basic
principle behind structured light sensors.
The aim of this dissertation is three-fold: firstly, to develop an approach that can determine
the size and position of a human in 3D space, secondly to capture the motion of a human in
3D space and finally assess the quality of merging point cloud data acquired from multiple
Kinect-like 3D data. Therefore, my goal is to employ realistic1 data, analogous to the
processing made by the human perception system.

Applications. The work presented in this dissertation can be useful for a variety of
applications. Specifically, the RGBD human recognition system introduced in Chap. 4
can be used primarily for collecting a large set of three dimensional training data, an
essential requirement for the purposes of learning a supervised object recognition system.
The research proposed within Chap. 4, provides reliable results up to ≈ 4 m and even
though it has been only evaluated with a Kinect sensor, it can potentially be adapted to
other sensors with a higher detection range, such as the SwissRanger 4000 or CamCube
2.0 TOF sensor. Furthermore, the work presented in Chap. 5 could lead to the following
applications: Firstly, the proposed 3D background estimation algorithm could be used
for an indoor surveillance system providing concurrent metric information of the moving
object. Secondly, monitoring and tracking the spatio-temporal changes of a human figure;
using a minimum bounding ellipsoid that could also be useful for classifying the behaviour
of a normal or abnormal person. This algorithm has been developed as a proof of concept,
consequently further refinements and enhancements are potentially possible. Finally, the
work in Chap. 6 is targeted for potential RGBD-based multi-Kinect human recognition
systems that require fusing 3D data from multiple Kinect sensors. These findings could be
further useful in understanding the advantages and disadvantages of a multi-Kinect RGBD
system.

1Realistic data contain information about colour, shape, relations between objects but also their time-
dependent variations.
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1.2. Contributions

1.2 Contributions
The principal contributions of this dissertation may be summarised as follows:

• The human visual system is able to perceive an object’s physical properties, such as
its location and size through a life learning interaction/experience with the object. For
a machine perception system, reality can be represented through different sources of
knowledge, such as an image or depth perception. The Kinect sensor is able to provide
both RGB and depth data in real-time. Utilising this information, I propose an approach
for detecting and segmenting a human instance in RGBD space and this work could
potentially help bridge the gap between human perception and machine vision.
More specifically, localisation was found by evaluating the performance of two object
detectors: the well known HOG detector, introduced by Dalal and Triggs [8] and an
improved version of the deformable part model (Felzenszwalb et al. [9]) introduced
by Dubout et al. [10]. The main difference between these two detectors is that the
former uses a single HOG model or filter to learn a human shape, whereas the latter
uses a star-like configuration of body-part models. Depending on the performance of
each detector, the part of the object to be processed within the detection box may vary.
The main contribution comes in the second part, whereby the segmentation decision is
given, based on a rich set of RGB and depth features defined in a Conditional Random
Field probabilistic framework. The maximum a posteriori (MAP) labelling is found by
minimising a pairwise energy function using graph cuts. One can then implement the
one-slack Structured Support Vector Machine algorithm for choosing the weights of the
energy function which give the lowest testing error.

• Object recognition is a process for detecting instances of semantic objects from camera
data. However, non-rigid objects such as humans do not remain static in time, but
undergo significant spatio-temporal deformations. This means that the task of object
recognition could be extended to the task of understanding object motion. Working
entirely with humans in RGBD space, I propose using a minimum bounding ellipsoid
as a mathematical figure for approximating the movement of the person in the scene.
Compared to a sphere, an ellipsoid has more degrees of freedom, which allows the
capturing of larger shape deformations. All information regarding the human ellipsoid
is contained in a 3×3 variance-covariance matrix. The deduced information from the
matrix is smoothed using a Kalman filter [11] for performing the tracking of the shape
variations.
Although the segmentation results from the previous contribution are promising, they
are not able to provide the complete shape of the human due to the restrictions of the
detection box. Thus, I considered using a 3D foreground estimation approach which is
able to capture the complete human shape but also remain invariant to environmental
conditions. The approach of Kammerl et al. [12] compares the octree representations of
the background and the current cloud for detecting spatial changes in the current frame
and assigning these changes to the foreground. However, depending on the size of the
leaf node, the amount of noise in the foreground may differ. Therefore, I propose a
pipeline for capturing and filtering noisy blobs in the point cloud, resulting in a clean
foreground mask. The ellipsoid in this case is able to capture the complete deformation
of the human shape.
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• Object recognition in RGBD space is a very challenging but an essential task for many
applications, such as surveillance systems, scene understanding and automatic driving
assistant systems (ADAS). While RGB and depth based systems have drawn considerable
attention from the computer vision and machine learning communities, little work has
been done in combining RGBD information from multiple sensors. Existing approaches
are restricted in using either a pair of Kinect sensors with significant overlapping between
the point clouds or combining the RGB information from several Kinect sensors. In view
of the above, I have therefore come to the conclusion that there is no evidence of finished
work that points out the benefits and restrictions/drawbacks of a potential multi-Kinect
RGBD-based object recognition system. Thus, I propose an evaluation pipeline that
would provide reliable information for the accuracy of merging point clouds generated
from a network of Kinect-like sensors.
The evaluation procedure consists of three stages: (a) transforming all sensors into
a global coordinate system using Perspective–n–Point algorithms, (b) optimising the
exterior orientation of the sensors through a bundle block adjustment and (c) minimising
the geometric error between different views by sequentially aligning all point clouds
using the ICP algorithm. Every step of the process is extensively evaluated, highlighting
its main advantages and disadvantages. The outcome of this work could be useful for
future development in the multi-Kinect object recognition field, when a resurgent need
may arise to combine 3D data from several sensors.

1.3 Outline of the Dissertation
The structure of the dissertation is organised as follows:

Chapter 2: Related Work. This chapter presents a brief overview on recent develop-
ments in the research areas involved in the current dissertation. Each of the contributions
is treated independently and is accompanied with its own related work in the field. Section
2.1 makes a literature survey on detecting and segmenting human instances in RGB and
RGBD space. Subsequently, Sect. 2.1 contains related work for monitoring and tracking
human instances in RGBD and finally, Sect. 2.3 presents methods that have been devel-
oped that require fusing information from multiple Kinect-like RGBD system.

Chapter 3: Conditional Random Fields, Inference and Learning. Assuming that
the reader has no prior knowledge on probabilistic graphical models, the purpose of this
chapter is to introduce some basic concepts in graphical models, with the prospect of
understanding the principles of Conditional Random Fields (CRF). This chapter lays the
foundation of knowledge that is required for understanding the work presented in the
following chapter.

Chapter 4: Human Recognition in RGBD. This chapter presents an approach for detect-
ing and segmenting human instances in RGBD. The detection performance is evaluated
using a single Histogram of Oriented Gradients (HOG) feature detector introduced by
Dalal and Triggs [8] and a star-like part-based HOG feature representation with individual
part scaling, introduced from Dubout et al. [10] and its based on the Deformable Part
Model approach of Felzenszwalb et al. [9]. In order to determine the spatial extent of the
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person within the detection box, my approach makes use of a rich set of RGBD features
modelled within a pairwise Conditional Random Field energy function. The most prob-
able labelling is found by minimising the energy function using graph cuts. The chapter
concludes by providing some qualitative and quantitative results of the proposed method
but also comparison results against state–of–the–art approaches.

Chapter 5: Human Motion Estimation and Tracking in RGBD. Here, a framework
is introduced for monitoring and tracking human instances in RGBD space. My results
are divided into two parts: In the first part, I propose an improvement over the approach
of Kammerl et al. [12] that takes care in removing noisy blobs from the foreground
produced by the existing algorithm. In the second part, the result from the previous step
is given to the minimum volume encapsulated ellipsoid (Moshtagh [13]) for capturing the
spatio-temporal changes of the human motion. The noise in the observation data extracted
from the variance-covariance matrix of the ellipsoid has been removed using a Kalman
filter [11].

Chapter 6: Towards a Multi Camera 3D Object Recognition System. In this chapter I
propose a workflow for assessing the reliability of merging point clouds generated from a
network of Kinect-like RGBD data. The working pipeline consists of three concrete stages:
(a) The orientation of all sensors in a global coordinate system using Perspective–n–Point
algorithms, (b) the optimisation of the exterior parameters of the sensors by solving a
bundle adjustment system and finally (c) the minimisation of the geometric error between
pairs of point clouds using the ICP algorithm.

Chapter 7: Conclusions and Future Work. This chapter concludes the dissertation
by discussing the overall contribution to in the field, pointing out the limitations of the
methods used and proposing directions for future research work.

1.4 Research Publications
According to Paragraph § 7 of the doctorate regulations of the Faculty of Mathematics
and Natural Sciences of the Humboldt University of Berlin, the vast majority of the results
in the current dissertation have been published in double blind peer reviewed conferences
and workshops, proving the originality of the presented work.
Results presented in the current dissertation have been published in the following confer-
ences and workshops:

• International Conference on Computer Vision Theory and Applications (VISAPP)

• The International Society for Photogrammetry and Remote Sensing (ISPRS)

• 3D-NordOst, Application-oriented Workshop on Measuring, Modelling, Processing and
Analysis of 3D-Data
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Chapter 2

Related Work

2.1 Object Recognition in 2D and 3D Space
This section presents a brief overview on recent 2D and 3D object recognition algorithms
that determine the position and spatial extent of the objects of interest in a scene.
Ladický et al. [14] approached this problem by combining object detectors with Condi-
tional Random Fields (Lafferty et al. [15]), jointly estimating the class category, location
and spatial extent of objects/regions in a scene. Their proposed submodular energy func-
tion is based on unary, pairwise and higher order potential terms combined with the
hypothesis results of the deformable part model object detector, introduced by Felzen-
szwalb et al. [9]. The maximum a posteriori (MAP) labelling was found by minimising
the proposed higher order energy function using swap-making algorithms (Boykov et al.
[16]). This work was later on extended by the same authors for approaching the problem
of human instance segmentation in a video stream [17]. Specifically, they proposed a CRF
energy function for integrating instant level information such as shape prior and exemplar
histograms, biasing the segmentation towards human shape. Incorporating higher level
image representations, Shu et al. [18] introduced a method which improves generic detec-
tors and iteratively refines the object region from the background using a superpixel-based
Bag-of-Words model (Csurja et al. [19]). Furthermore, Hariharan et al. [20] was the
first to present a Convolutional Neural Network approach for simultaneously detecting
and segmenting objects in an image. Their algorithm is based on classifying region pro-
posals using features extracted from both the bounding box of the region and the region
foreground, integrated in a jointly trained CNN.
In the RGBD domain, Lai et al. [21] proposed a view-based approach for segmenting
objects in a point cloud generated by a depth sensor. A sliding window detector trained
from different object views was used for assigning class probabilities to every image pixel.
Then, they performed an MRF inference over the projected probabilities in voxel space,
combining cues from different views for labelling the scene. Moreover, Teichman et al.
[22] proposed a semi-automatic approach for segmenting deformable objects in RGBD
space, providing an initial seed as a prior hard constraint for inferring the segmentation.
His approach makes use of a rich set of features defined in RGBD space. Most recent
work in the field is the one of Gupta et al. [23] who studied the problem of object
detection and segmentation in RGBD by combining an RGB feature-based CNN with a
depth feature-based CNN, fed in an SVM classifier.
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2.2 Human Motion Analysis and Tracking in 3D Space

This section presents an overview on recent approaches on human motion analysis and
tracking based on depth and pure 3D information. Although very limited work has been
done in using mathematical shapes to express a human motion, related work could also
involve approaches that try to capture the human motion using other sources of information
such as features.
According to Chen et al. [24] and Aggarwal et al. [25], depth based approaches can be
further divided into space time approaches and sequential approaches. The difference
between these two categories is that space time approaches make use of features (local
or global) without modelling any temporal dynamics of the object, whereas space time
approaches learn the dynamics of an object based on local features computed within a
sequence. However, using local and global features in any of the two categories can lead
to erroneous results. For example, depth sequences containing large occlusions between
the objects may not be reliable for learning global features for a human motion recognition
system. Furthermore, depending on the quality of the depth sensor but also of the scene,
the amount of unknown areas in the depth map may vary. Thus, applying RGB based
features on a depth image will not deliver satisfactory results. These problems stimulated
researchers to develop depth-based features which are highly discriminative and robust
against occlusions.
Li et al. [26] presented a human recognition system that uses an action graph for modelling
the dynamics of the actions and a bag of 3D points representing a set of salient postures.
Orefej et al. [27] introduced a depth feature known as the 4D Histogram of Oriented
Normals descriptor (HON4D), capable of capturing complex joint shape-motion cues at a
pixel-level. A depth sequence is described based on the distribution of the surface normal
orientation in the 4D space of time, depth and spatial coordinates. The HON4D feature
is then built by creating 4D projectors which quantise the 4D space, representing possible
directions for the 4D normal. Another related work was the one of Wilson et al. [28]
who presented the so-called Space-Time Occupancy Patterns (STOP) feature descriptor
for performing human action recognition from sequences of depth images. The method
works by dividing the space and time axes into equally sized segments, defining a 4D
grid for every depth map sequence. The great advantage of STOP feature is that it is able
to preserve spatio-temporal contextual information between space-time cells, allowing to
also accommodate intra-action variations. Wang et al. [29] introduced a fast-to-train semi-
local feature, called Random Occupancy Pattern (ROP). It is based on a sampling scheme
that effectively explores an extremely large sampling space. A sparse coding approach is
then used for encoding these features in the sample space. Furthermore, Shotton et al.
[30] introduced two approaches that predict the 3D position of all body joins from a depth
image without using any temporal information. The first method introduces a per-pixel
classification of different body parts whereas in the second approach they directly regress
the position of the body parts. Both methods can run in real-time using simple depth
features and parallelised decision forests. This work was also commercialised for human-
machine interaction games performed with the Microsoft Kinect console. More recent
work in the field, Rafi et al. [31] proposed a human pose estimation approach based on a
semantic occlusion model learned by a regression forest classifier.
Similar approaches have been introduced in 3D but are quite limited compare to the

8



2.3. Multi-Sensor Human Recognition in RGBD

depth-based approaches. Specifically, Buys et al. [32] presented an easy-to-train human
pose recognition system which combines both RGB and depth features. Also, Hegger et
al. [33] proposed a 3D feature descriptor based on Local Surface Normals (LSN) which
is capable of detecting human poses under severe occlusions. Features are learned in a
supervised manner and partial occlusions are detected based on a top-down/bottom-up
segmentation approach. Furthermore, Sigalas et al. [34] introduced a data-driven model-
based method for 3D torso estimation from RGBD data. Starting with the detection of
the face, the position of the shoulders is defined based on illumination, scale and pose
invariant features on the RGB silhouette. Finally, the pose of the torso is found using 3D
geometric primitives, put in a global optimisation scheme.
Interesting work was also introduced in the 3D object tracking literature: the Unscented
Kalman Filter (Ziegler et al. [35]) and the Random Hypersurface Models (Baum et al.
[36]) are some of the most recent developments in the area of 3D object tracking.

2.3 Multi-Sensor Human Recognition in RGBD
This section presents recent approaches for fusing 3D data from multiple Kinect sensors.
However, it should be stressed that some approaches are not presented as an independent
work but constitute a part of the proposed 3D object recognition system.
Schröder et al. [37] investigated the advantages and disadvantages of using multiple
Kinect sensors in an indoor environment. The interference of the infrared lasers in space
was solved using fast rotation disks, creating a time division multiple access (TDMA)
scenario. They also developed an algorithm for evaluating the quality of the depth images,
generated with and without their multiplexing approach. Tong et al. [38] proposed a
scanning system for capturing 3D full human body models using multiple Kinect sensors.
To eliminate the interference between their near-infrared emitter, two pair of sensors were
used for scanning the upper and lower part of the body. A third sensor was placed on the
opposite side of the body capturing its middle part. Different pair of point clouds were
initially registered using a template-based registration approach. For eliminating the loop
closure problem, a brute-force global solution was used for bringing all scans into the
Iterated Closest Point (ICP) iteration loop. Florian et al. [39] introduced the so-called
Random Hypersurface Models (RHMs), an extended object tracking modelling technique
capable of tracking objects in 3D space. For a person walking in the scene, tracking
is performed by observing a cylinder encapsulating the human figure from a network
of four Kinect sensors. The observation data were placed in a measurement equation,
smoothed using the Unscented Kalman Filter (Julier et al. [40]). Furthermore, Almazan
et al. [41] developed a surveillance system for detecting and tracking people within an
indoor environment using multiple Kinect sensors. Data extracted by each device was
transformed into a world coordinate system using a plane-based technique. All moving
3D pixels (also known as voxels) were transformed in a "plan view" which monitors the
activity of the people in the scene.
Finally, Michel et al. [42] presented a top-down solution for tracking the complete artic-
ulated movement of a human body from markerless visual observations acquired by two
Kinect sensors. The complete tracking process was solved using stochastic optimisation
techniques.
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Chapter 3

Conditional Random Fields, Inference
and Learning

3.1 Introduction
Many computer vision applications such as natural language parsing, Context-Free Gra-
mmars and image segmentation involve predicting a set of unobserved (latent) variables
given a set of observed variables. Specifically, for the task of image segmentation, the goal
is to partition the image into object classes (also known as segments), making an intuition
that all pixels clustered under the same label also share similar properties. More precisely,
a label from a predefined label set is assigned to every pixel in the image, taking into
account (in its simplest case) the intensity of the pixel but also the intensity information
of pixels lying in its close vicinity. A well suited approach for these tasks are Conditional
Random Fields (CRF), which is a statistical modelling class used for structured prediction
outputs.
This chapter is intended to provide the reader with a firm conceptual understanding of
basic definitions and concepts in graph theory and probabilistic graphical models. For the
latter, the primary focus is on understanding the basic principles on Conditional Random
Fields, their inference and learning methods that are primarily used in Chap. 4. If the
reader has no prior knowledge on the topic, it is highly recommended to read this chapter
before moving on to Chap. 4

3.2 Preliminaries
Let G = {V , E} represent a graphical model, expressed by a set of nodes V and edges E .
For every node i ∈ V , let Xi correspond to a random variable assigned a value xi from
its state space Xi(xi ∈ Xi). If X = (Xi)i∈V denotes the joint distribution variable of the
random field, then x = (xi)i∈V is the realisation of X . Every configuration x = (xi)i∈V
takes values from its state space X which is defined as the Cartesian product of the
individual state spaces assigned to every random variable Xi, so that X =

∏
i∈V Xi. For

a subset of random variables, let xc = (xi)i∈C represent a tuple of random variables
defining a clique c ∈ V . A clique is defined as a set of variables grouped together.
The probability distribution of a random variable X is denoted as p(x) and the joint
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probability distribution over a set of random variables X is represented by p(x). For
consistency with the related literature in the current chapter, most definitions will use the
realisation of the variables rather than the random variables themselves. Also, the words
node and random variable are interchangeably used within the context.

3.3 Markov Random Fields
A Markov Random Field, also known as Markov network, is an undirected graphical
model defined over a set of random variables satisfying a Markov property (see below). A
Markov random field is similar to a Bayesian network in its representation of dependencies
but differs in that Bayesian networks are directed and acyclic, whereas Markov fields are
undirected and cyclic. For an undirected graph G, a set of random variables X is said to
form an MRF iif the following Markov properties are satisfied:

• Pairwise Markov property: Two non-adjacent random variables are said to be condi-
tionally independent given all other variables:

∀i ∈ V , ∀j ∈ V , Xi ⊥⊥ Xj | XV\{i,j}, if {i, j} /∈ E (3.1)

• Local Markov property: Every random variable is conditionally independent of all
other variables given its neighbours1:

∀i ∈ V , Xi ⊥⊥ XV−{i} | XNi
(3.2)

where Ni = {j | {i, j} ∈ E} denotes all random variables Xj that are part of the
Markov Blanket of random variable Xi and are connected by an edge Eij .

• Global Markov property: Any two cliquesXcA andXcB are conditionally independent
of all other cliques, iif a separating clique XcS exists:

∀A ⊆ V , ∀B ⊆ V , ∀S ⊆ V , XA ⊥⊥XB |XS (3.3)

Finding the probability distribution over the complete random field is considered to be an
intractable task. To resolve this, a class of Markov random fields exists that factorises the
graph depending on its cliques. Specifically, a first order clique is represented by just one
random variable, a second order (or pairwise) clique by a set of two random variables and
a higher order clique by a set of more random variables. If a clique is not overlapping any
other clique, it is known to be a maximal clique. According to the Hammersley-Clifford
theorem [43], a family of such distributions can be represented as a Gibbs distribution in
the following factorised form:

p(x) =
1

Z(x)

∏

c∈C

ψc(xc) (3.4)

1For a grid like graph (e.g. representing an image) neighbourhood relationship can be either a 4- or 8-
neighbourhood.
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X1 X2 X3

X4 X5 X6 X7

X8 X9 X10

(a)

X1 X2 X3

X4 X5 X6 X7

X8 X9 X10

3 f{1,2,5} 3 f{2,3,6}

3 f{4,5,8} 3 f{5,6,9} 3 f{6,7,10}

(b)

Figure 3.1: Example of a Markov Random Field and Factor Graph. The Markov Random Field
in (a) is represented by the factor graph (b) and has factors of order 3. For the current graph
configuration, the factor graph is defined on maximum cliques. (Source: The above figures have
been adopted from the survey work of Wang et al. [44])

where ψc(xc) corresponds to a real value potential function of clique c and Z(x) is known
as the normalised or partition function, defined as:

Z(x) =
∑

x∈X

∏

c∈C

ψc(xc) (3.5)

An MRF could also be represented by a factor graph, which uses additional nodes known
as factor nodes to model the joint distribution in the graph. If F represents a set of all
factors nodes in the graph, then the joint probability distribution over the complete random
field could be expressed by the following form:

p(x) =
1

Z(x)

∏

f∈F

ψf (xf ) (3.6)

where ψf (xf ) is a potential function modelling a subset of random variables. An example
of a Markov random field and the corresponding factor graph is gives in Fig. 3.1.
Inference of MRF involves finding a configuration x ∈ X for which the probability
distribution of p(x) is maximum (denoted as x̂). This can be performed through a
Maximum a Posteriori (MAP) estimation, expressed by:

x̂ = argmax
x∈X

p(x) (3.7)

For a potential function ψc(xc) : R → R, ∀c ∈ C, the corresponding clique energy
function ϕc : R→ R is given by:

ϕ(xc) = − logψc(xc) (3.8)

Inserting 3.8 in 3.4, the probability distribution of p(x),x ∈ X becomes:

p(x) =
1

Z(x)
exp(−E(x)) (3.9)
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(a) (b)

Figure 3.2: Pixel connectivity. Neighbourhood relationship of a random variable in a grid-like
topological structure such as an image): (a) 4-neighborhood and (b) 8-neighborhood. The main
random variable is represented by a green colour and all neighbourhood random variables by a red
colour. (Best viewed in colour)

where E(x) denotes the energy function of the MRF defined by the summation of all
maximal cliques in the field, expressed by:

E(x) =
∑

c∈C

ϕc(xc) (3.10)

Due to the existence of the negative log function in the right part of Eq. 3.9, the MAP
inference of p(x) is equivalent to minimising E(x), expressed as:

x̂ = argmin
x∈X

E(x) (3.11)

Therefore, the following equality should hold:

x̂ = argmax
x∈X

p(x) = argmin
x∈X

E(x) (3.12)

Several methods has been proposed for minimising the energy function E(x), but more
attention is been given to approaches using graph cuts due to their computational perfor-
mance and efficiency (refer to Sect. 3.6 for more information).

3.4 Pairwise MRF Energy Functions
Pairwise MRF energy functions strictly model cliques of order less than three. Specif-
ically, for grid-like graphs (e.g. an image), the pairwise energy function consists of
unary (also known as singleton) potentials functions ϕi(xi)i∈V and pairwise potential
functions ϕij(xi, xj){i,j}∈E , defined over two neighbourhood random variables in a 4 or
8-neighbourhood system. Adapting the energy function 3.10 for pairwise relations, it
becomes:

E(x) =
∑

i∈V

ϕi(xi) +
∑

(i,j)∈Ni

ϕij(xi, xj) (3.13)
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This form of an energy function is well established in the computer vision literature and
has been used in a large variety of applications, such as segmentation (Kato et al. [45], Shi
et al. [46], Björkman et al. [47]), object detection (Yin et al. [48], Colin et al. [49], Ghosh
et al. [50]), 3D reconstruction (Choi et al. [51], Li et al. [52], Pan et al. [53]) and stereo
processing (Sun et al. [54], Zhang et al. [55], Yamaguchi et al. [56]). Energy functions
modelling up to pairwise relations have proven to work well for several computer vision
problems. This form of relationship is considered as the most primitive type of interaction
but also the most computationally efficient approach.
Every random variable is assigned to a physical quantity that is problem dependent. For
an image segmentation task, a random variable representing a pixel can take a value
from a predefined label set L containing a list of objects, or for an image denoising
task, an intensity value within the range of 0-255. The data likelihood term encoded
by the sum of the unary potentials, is also problem dependent. Given an RGB image
representing an object and its background, one should assign a label class from the label
set L = {"background","object"} to every pixel in the image. As shown initially by
Boykov et al. [57] and later on by Rother et al. [58], a user can mark some regions (hard
constraints/seeds) as a prior knowledge for the background and foreground classes, and
build a Gaussian Mixture Model representing each of them. Then, every pixel in the image
can be assigned a cost computed by the negative log-likelihood of the prior distributions
of each class.
Furthermore, pairwise potentials also model contextual constraints between adjacent ran-
dom variables defined within the local neighbourhood. One of the simplest contextual
constraint is the smoothness constraint, enforcing that the states of all nodes should vary
smoothly in the spatial domain. In the field of computer vision, one of the most funda-
mental decreasing costs used to define a pairwise potential is that of the Potts model [59],
expressed by:

ϕij(xi, xj) = w(1− δ(xi − xj)) (3.14)

wherew is a weight coefficient that specifies the amount of penalisation between the pixels
and δ(·) is the Kronecker delta function which can only take the value 0 or 1. Several other
variations of the Potts model exist, such as the truncated versions, in which the maximum
cost assigned between two variables should not exceed a predefined value. A special,
harder penalisation case of the Potts model is the Ising model [60], which can only take
the value 0 or 1.

3.5 Conditional Random Fields
A Conditional Random Field (CRF), introduced by Lafferty et al. [15], is a discriminative
undirected probabilistic graphical model used to predict the values of the latent (unob-
served) variables given a set of observed variables. Modifying the previous notation, a set
of random variables x representing the complete realisation of the random field, can be
cloned into a second layer parallel to the first layer, following a one-to-one correspondence.
Let the bottom layer describe the unobserved random field denoted by y and the top layer
the observation field represented by x as depicted in Fig. 3.3. Every random variable
(yi)i∈V in the unobserved layer should be assigned a class label from a predefined label

15



3. Conditional Random Fields, Inference and Learning

Y1 Y2 Y3

Y4 Y5 Y6

X7 X8 X9

X10 X11 X12

Figure 3.3: A grid like structure Conditional Random Field. The red nodes correspond to the
observation variables (observation layer), the green nodes to the latent variables (unknown layer)
and the blue rectangles to the potential functions modelling a unary or pairwise relationship. (Best
viewed in colour)

space Y (previously denoted by L). This label space, depending on the application, can
take a discrete or continues number of classes. The most likely configuration of the unob-
served random variables y ∈ Y is revealed based on the observations x in the observation
layer. In its mathematical representation, this form of relationship can be expressed by the
conditional probability p(y | x), which can be read as "what it the probability of having
a labelling y ∈ Y given x". The configuration x is also part of a state space X , but due
to its nature, an infinite number of solutions exist.
Similarly to an MRF, a CRF can be represented in a form of a Gibbs distribution as follows:

p(y | x) = 1

Z(x)
exp(−E(x,y)) (3.15)

where E(x,y) corresponds to the energy function expressed by:

E(x,y) =
∑

c∈C

ϕc(xc,yc) (3.16)

It is clear from 3.16, that no modelling over the probability distribution of the observed
variables x exists, assuming a relaxation on the dependencies between them. Thus, a CRF
can much easier model the joint probability distribution over the latent variables y, given
the observed variables x. This is considered the main advantage of a CRF compare to
an MRF. Also, all clique potentials c ∈ C are data dependent, which provides a better
interaction between the random variables in the clique.
In the context of computer vision, a CRF can be thought of as a two grid-like layer
representation, where the bottom layer corresponds to a set of observed random variables
x and the top layer to a set of latent variables y (see Fig. 3.3). For an image segmentation
task, every pixel in the image will assign a value from the label set Y to the corresponding
latent variable depending on the local interaction of the neighbourhood variables in the
observation layer. The simplest form of pairwise modelling was introduced by Boykov
et al. [57] for binary segmentation tasks, using intensity contrast and spatial distance
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Figure 3.4: Graph representation with two terminal nodes and corresponding st-cut. (a) A graph
G connected with two additional terminals called source and sink; (b) st-cut on graph G. Red and
green nodes correspond to a set of pixels grouped together due to the partition of the graph. The
direction of the blue line defines the direction of the cut, considering all edges with minimum cost.
(Best viewed in colour)

between neighbourhood pixels in an N-D image. This form of modelling is considered
to be more reliable than the pairwise smoothness constraint of the Potts model [59].
Modifying the general form of the CRF energy function 3.16 to a pairwise case, results to
the following form:

E(x,y) =
∑

i∈V

ϕi(xi, yi) +
∑

(i,j)∈Ni

ϕij(xi, xj, yi, yj) (3.17)

For the pairwise case, the CRF energy function 3.17 can take the following form:

E(x,y) =
∑

i∈V

ϕi(x,y) +
∑

(i,j)∈Ni

ϕij(x,y) (3.18)

Such a pairwise energy function is adopted in the work proposed in Chap. 4.

3.6 Graph Cuts
Graph cuts have been extensively used in the areas of computer vision and machine
learning, solving a variety of problems in applications such as segmentation (Kohli et al.
[61], Ladický et al. [14], Vineet et al. [17]), image restoration (Boykov et al. [16], Yan
et al. [62]), stereo vision and 3D reconstruction (Kolmogorov et al. [63], Wang et al.
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[64], Altantawy et al. [65]). They were first introduced in computer vision by Greig et al.
[66], who proved that if an edge potential of two random variables defined in a discrete
pairwise MRF energy function takes the form of an Ising model [60], then a exact solution
is feasible in polynomial time2 using graph cuts. This process is also known as the s-t cut
problem.
As stated in the work of Kolmogorov and Zabih [67], the graph cut algorithm can find
the global minimum of any arbitrary graph independently of its size and structure with a
very low polynomial run time complexity. Even in cases where a global minimum is not
achievable, it will return the best local minimum solution for the current energy function.

3.6.1 The Min-Cut/Max-Flow Algorithm
A graph G, besides its nodes V and edges E , can also contain some additional nodes
called terminals. Each terminal node is assigned a label from a predefined label set and
is initially linked to all nodes in the graph. In the simplest two label binary case, the
constructed graph involves two terminals known as source and sink. For a binary image
classification task, the source node can take the value 1 representing the "object" class,
and the sink node the value 0 for representing the "background" class. A partition of the
graph using the min-cut/max-flow algorithm (Boykov and Kolmogorov [68]) will create
two strictly separable, non-overlapping clusters, where one cluster will contain a set of
nodes representing the background class and the other cluster the foreground class.
Furthermore, the graph G consists of two additional sets of edges known as n-links and
t-links. The n-links connect neighbourhood nodes connected by an edge and the t-links
connect each node to both terminals. Thus, every node corresponding to a random variable
(Xi)i∈V has two t-links {Xi, S} and {Xi, T} and one n-link for every random variable
Xj ∈ Ni that lies in the vicinity of (Xi)i∈V . Based on the previous information, the
updated version of the graph incorporating the terminals and link edges can be expressed
in the following way (Boykov et al. [57]):

V = V ∪ {S, T} (3.19)

E = N
⋃

i∈V

{{Xi, S}, {Xi, T}} (3.20)

Every edge e ∈ E in the graph is assigned a non-negative weight (or cost) we, computed
by the pairwise potential function ϕij .
The min-cut/max-flow algorithm tries to find a subset of edges C ⊂ E whose total cost
is minimum. The induced graph G(C) = {V , E\C} separates the terminals by excluding
the C edges. As a result, all nodes will be assigned the label of the terminal they belong
to.
According to Boykov and Kolmogorov [68], if the number of terminals added in the graph
is two, then the min-cut/max-flow can be computed in low-order polynomial time. If more
terminals are used (multi-label problem), the problem is NP-hard and can be converted
into polynomial complexity using move making algorithms such as the α− expansion or

2An algorithm can be solved in polynomial time if the number of steps required to complete the algorithm
isO(n)k, where k is a non-negative constant integer value, and n corresponds to the complexity of the input.

18



3.6. Graph Cuts

S

T

ya

θa;0

θa;1

S

T

yb

θb;0

θb;1

S

T

ya yb

θab;00

θab;11

θab;10

θab;01 − θab;00
− θab;11

S

T

ya yb

w1 w3

w2 w4

w5

w6

Figure 3.5: Graph representation of a Pseudo-Boolean submodular energy function. The figure
shows the construction of a submodular energy function defined in the binary domain, adding its
individual unary and pairwise terms. Every edge in the final graph is assigned a cost w, which
is a summation of individual edge costs θ defined between the same nodes. Every configuration
y ∈ Y of an energy function E(y) returns a different cost by the st-cut. Thus, the goal is to find
the configuration y ∈ Y for which the energy function E(y) is minimum. (Source: The above
figure has been reproduced with small modifications from the doctoral thesis of Kohli [71])

αβ − swap making algorithms (Boykov et al. [16]). These approaches have been widely
used in computer vision for solving multi-label image classification problems (Russell et
al. [69], Kohli et al. [61], Huang et al. [70]) and are beyond the scope of this chapter.

3.6.2 Minimising Energy Functions using Graph Cuts
Any energy function satisfying the submodularity constraints (see Appx. A), can efficiently
be solved in polynomial time using graph cuts. Minimising this form of energy functions
involves minimising a sum of unary and pairwise functions expressed in the binary domain
Y = {0, 1}. For an MRF energy function E(y), every configuration y ∈ Y results a
different cost by the st-cut. Thus, the objective is to find the configuration y ∈ Y for
which the energy function E(y) is minimum. According to Kolmogorov [72], a pairwise
binary submodular energy function can be represented in the following way:

E(y; θ) = θconst +
∑

u∈V,i∈Y

θu;i1[yu = i]

+
∑

(u,v)∈E, (j,k)∈Y

θuv;jk1[yu = j]1[yv = k]
(3.21)

where θu;i represents the penalty for assigning the value i ∈ Y to random variable yu, θuv;jk
is the penalty for assigning values (j, k) ∈ Y to random variables yu and yv respectively
and 1[yu = yv] is an indicator function3 that takes the value one if the condition yu = yv is
satisfied and zero otherwise. The constant term θconst is independent from the distribution

3This is the Iverson bracket representation of the indicator function, which is also used as an alternative
to the δi(yv) form.
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3. Conditional Random Fields, Inference and Learning

of y and thus it is not involved in the minimisation process. This term ensures that the
cost induced by the st-cut will never be zero.
Binary energy functions of the form 3.21 can also be represented as:

E(y; θ) = θconst +
∑

u∈V

(θu;1yu + θv;0ȳv)

+
∑

(u,v)∈E

(θst;11yuyv + θst;01ȳuyv + θst;10yuȳv + θst;00ȳuȳv)
(3.22)

where ȳ = 1− y is the complementary variable of y.
This class of pseudo-Boolean energy functions were well investigated by Kolmogorov
and Zabih [67], who stated that minimisation can be performed using graph cuts iif E(y)
is submodular and if all edge weights are strictly positive. Figure 3.5 represents the
construction of a binary graph as an accumulation of individual node and edge weights.

3.7 Learning Structured Output Spaces
The main objective of supervised learning is to learn a function f : X → Y that maps any
form of input x ∈ X to a discrete output y ∈ Y , based on a training set of input-output
pairs {(x1,y1), . . . , (xn,yn)} ∈ X ×Y . Although the size of the training dataset is said to
be fixed, its probability distribution is considered to be unknown. For image segmentation
applications, the function f should take as an input a set of image features (observations
x) and return the most probable label image ŷ ∈ Y . The main objective of this work
is to learn a discriminant function F : X × Y → R such that for any given input x,
the function F will derive a prediction that maximises F over the space of the response
variable. Concretely, the hypothesis function f is expressed by:

f(x;w) = argmax
y∈Y

F (x,y;w) (3.23)

where w corresponds to a parameter vector. Presuming a linear relationship between
input-output spaces, combined in a problem dependent function Ψ(x,y), the function F
is also considered to be linear and can take the form:

F (x,y;w) = ⟨w, Ψ(x,y)⟩ (3.24)

In machine learning, the quality of a classifier is measured by a loss function. There is a
variety of loss functions, each of them penalising in a different way the cost that has to
be paid for an inaccurate prediction. The simplest loss function is the standard 0-1 loss,
introduced by Weston et al. [73] and has been shown to work well for simple prediction
problems. For more complicated prediction outputs, more sophisticated loss functions are
needed. For example, using a 0-1 loss function for evaluating a natural language parsing
(NLP) classifier is senseless, since it lacks of quality measure. Knowing the correct parse
tree, the quality of the parsing can be evaluated based on the overlapping of the nodes
between the correct and predicted tree (Johnson [74]). If p(x,y) represents the probability
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3.7. Learning Structured Output Spaces

distribution of the data, and△(y, ŷ) any form of a loss function, the goal of the learning
problem is to minimise the risk:

R△
P (f) =

∫

X×Y
△(y, f(x)) dp(x,y) (3.25)

Although the probability distribution p(x,y) is considered being unknown, given an n set
of i.i.d training samples S = {(x1,y1), (x2,y2), . . . , (xn,yn)} ∈ X × Y , the problem
boils down in minimising the empirical risk:

R△
S (f) =

1

n

n∑

i=1

△(yi, f(xi)) (3.26)

For a function f(x), the empirical risk is set to zero, iif f(x) is parametrised by a weighted
vector w, such that△(y,y′) > 0 for y ̸= y′ and△(y,y) = 0. Concretely, the condition
of zero training zero can be expressed by a set of non-linear constrains as follows:

max
y∈Y\yi

{⟨w, Ψ(xi,y)⟩} < ⟨w, Ψ(xi,yi)⟩, ∀i ∈ Y (3.27)

Converting inequality 3.27 into linear, the following formulation should hold:

∀i, ∀y ∈ Y \ yi : ⟨w, δΨi(y)⟩ > 0 (3.28)

where δΨi(y) ≡ Ψ(xi,yi)−Ψ(xi,y).
Solving inequality 3.28 provides more than one solution for w. A unique solution can
be achieved by finding a weighted vector w, subject to ∥w∥ ≤ 1, which can estimate a
current prediction score ŷi(w) = argmax

y ̸=yi
⟨w, Ψ(xi,y)⟩ uniformly different from the true

score yi. This is considered as the generalised version of the max-margin SVM principle
introduced by Vapnik [75].
Several versions of the max-margin optimisation problem exist, with the simplest problem
of the hard-margin formulated as follows:

SVM0 : min
w

1

2
∥w∥2

∀i, ∀y ∈ Y \ yi : ⟨w, δΨi(y)⟩ ≥ 1
(3.29)

Hard-margin SVM is sensitive to noise in the training data. If a single outlier in the
training set exists, this will effect the boundary (hyperplane) of the classifier. Thus, in
order to compensate for some error in the training set, a soft-margin SVM was introduced,
incorporating a slack variable for every non-linear constraint, resulting in a tighter upper
bound on the empirical risk 3.26:

SVM1 : min
w, ξ

1

2
∥w∥2 + C

n

n∑

i=1

ξi, s.t. ∀i, ξi ≥ 0

∀i, ∀y ∈ Y \ yi : ⟨w, δΨi(y)⟩ ≥ 1− ξi
(3.30)

where C > 0 is a constant parameter that controls the tradeoff between training minimisa-
tion error and margin maximisation error.
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3. Conditional Random Fields, Inference and Learning

The SVM1 corresponds to a 0-1 loss, making it inappropriate for very large structured
output spaces. Tsochantaridis et al. ([76], [77]), proposed two approaches which generalise
SVM1 to a more generic representation, incorporating arbitrary loss functions in the
minimisation process. In the first approach, the slack variables are re-scaled (also known
as slack re-scaling SVM) according to the loss evaluated in every linear constraint. For
a solution yi violating the margin constraint, penalisation is proportional to the loss
△(yi,y). If the loss is severe, penalisation is high and if the loss is low, penalisation is
also low. Mathematically, this can be expressed by scaling every slack variable ξi with the
corresponding loss△(yi,y) of the solution yi ∈ Y , formulating the problem as:

SVM△s
1 : min

w, ξ

1

2
∥w∥2 + C

n

n∑

i=1

ξi, s.t. ∀i, ξi ≥ 0

∀i, ∀y ∈ Y \ yi : ⟨w, δΨi(y)⟩ ≥ 1− ξi
△(yi,y)

(3.31)

The second approach involves a margin re-scaling (also known as margin re-scaling
SVM), if the loss function is expressed by a Hamming loss, as proposed by Taskar et al.
[78]. In this case, the learning problem is mathematically represented by:

SVM△m
1 : min

w, ξ

1

2
∥w∥2 + C

n

n∑

i=1

ξi, s.t. ∀i, ξi ≥ 0

∀i, ∀y ∈ Y \ yi : ⟨w, δΨi(y)⟩ ≥ △(yi,y)− ξi
(3.32)

All information provided in Sect. 3.7 was derived by the original work of Vapnik et al.
[75] and Tsochantaridis et al. ([76], [77]).

3.8 Conclusions
This chapter was intended to make the reader familiar with the basic principles of Con-
ditional Random Fields, their inference and learning process. This is important for
understanding the proposed segmentation approach introduced in Chap. 4. Extensive
analysis on the aforementioned topics are beyond the scope of this chapter, and the reader
is encouraged to refer to other literature sources, such as the surveys of Wang et al. [44]
and Sutton et al. [79] or the textbooks of Bishop [80], MacKay [81] and Koller et al. [82].
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Chapter 4

Human Recognition in RGBD

4.1 Introduction
This chapter addresses the problem of localisation and spatial extent determination of a
human instance in three-dimensional space. Both fields have been well studied in the
two-dimensional domain, showing impressive results not only in accuracy but also in
computational performance. With the rapid use of depth sensors, such as the Microsoft
Kinect, a new field of research emerged, stimulating researchers in the computer vision
and robotics fields to develop algorithms that can perceive the physical properties of a
human, bridging the gap between human perception and machine vision.
To this end, a Conditional Random Field (CRF) pairwise submodular energy function
is proposed for inferring the segmentation using features from both the RGB and depth
domain. The maximum a posteriori (MAP) inference is found in polynomial time using
graph cuts. Moreover, the segmentation is performed within the detection box, with the
latter evaluated using a single Histogram of Oriented Gradients (HOG) filter and a star-like
part-based HOG representation.
The novelty of the proposed method is that no user interaction is required for inferring the
segmentation, as opposed to related work in the field.

4.2 People Detection
People detection is an essential component for a wide range of applications such as
surveillance systems, people counting and behavioural understanding. However, due to
the viewing variations and crowd density in the scene, the reliability of the detector may
vary. This effect manifests itself by the coarse localisation of the bounding box, leading
to an imprecise detection result. To assess the quality of the detection and its effect on the
accuracy of the segmentation, the following approaches were used and evaluated: Dalal
and Triggs [8] and Dubout et al. [10]. Both methods are sliding-window approaches and
use the Histogram of Oriented Gradients (HOG) feature to learn a human representation.
Specifically, Dalal and Triggs use a single feature to represent an object category while
Dubout introduces an improved version of the deformable part model detector initially
proposed by Felzenszwalb et al. [9]. The main advantage of the deformable part models
is that is uses a star-like-structured part-based model defined by a main root filter and a set
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4. Human Recognition in RGBD

(a) (b)

Figure 4.1: Human detection examples using a global HOG representation and a local star-like
part-based HOG representation. (a) Example detection results using the approach of Dalal and
Triggs [8] and (b) Felzenszwalb et al. [9]. (Source: INRIA Person dataset)

of associated parts filters. Dubout et al. [10] extended this work by efficiently deforming
the parts across different scales allowing them to compensate for even a wider class of
deformations and achieving a more accurate detection output. However, the quality of the
detection is unrelated to the number of false positives proposed by the classifier. Therefore,
it is important to eliminate those candidates and preserve the ones with higher detection
scores.
Let D = {d1, . . . , dn} represent the n amount of detections found in an image and
S = {s1, . . . , sn} their corresponding detection scores. In order to ensure that the detector
will find all true positives, a low detection threshold td is given. This will produce a large
amount of false positives but will guarantee all true positive solutions. For eliminating all
false positives and preserving only the correct detection outputs, the detection scores were
converted into conditional probabilities using the Platt scaling approach (Platt [83]). This
method was originally invented in the context of support vector machines (Vapnik [75])
but was later on applied to other classification models as well.
Platt scaling (also known as Platt calibration) is used to relate the detection scores with
the conditional probabilities according to the following regression formulation:

p(c | si) =
1

1 + exp(Asi +B)
∀si ∈ S, c ∈ {cB, cF} (4.1)

where (A,B) are the parameters of the sigmoid function and can be found by minimising
the negative log-likelihood of the training or validation set and {cB, cF} represents the
foreground/background classes. In order to obtain a background probability for every
detection rectangle, the following formulation should hold:

p(cB | s) = 1− p(cF | s), ∀s ∈ S (4.2)

If the background probability of a detection box is smaller than a predefined probability
threshold, it should be removed. However, during run time, it may happen that two or
more detection boxes have similar probabilities and correspond to the same person. In
this case, only the detection box with the highest probability is preserved.
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4.3. Energy Function

4.3 Energy Function
Following the notation introduced in Chap. 3, let Y = {0, 1} represent a binary label
set where 0 corresponds to the background label and 1 to the foreground/object label.
For an image of n number of pixels defined over a lattice V = {1, . . . , n}, let y be a
labelling which takes values from the Yn label space. As stated in Sec. 3.3, the goal
of MAP inference is to find the most probable labelling y ∈ Yn conditioned on a set of
observations x by minimising an energy function E(y,x). The proposed energy function
is defined on a set of RGB and depth features and its formulated as follows:

E(y,x) = wN
∑

i∈V

ψi(y,x) + wE
∑

(i,j)∈Ni

ψij(y,x) (4.3)

where ψi(y,x) is a node potential function defined by the product of two conditionally
independent events introduced in Sect. 4.3.1, ψij(y,x) is an edge potential function
capturing one of the different pairwise relations discussed in Sect. 4.3.2 andw = [wN , wE ]
are the corresponding node and edge weights. The proposed energy function adopts a
4-neighbourhood relationship for modelling the edge potentials.

4.3.1 Unary Potentials
Every pixel in the image should be classified as foreground or background label based on
a cost defined in the unary term of energy function 4.3. In this framework, the cost is
expressed by the product of two conditionally independent probability events, formulated
as follows:

ψi(y,x) =

{
p1(xi) p2(xi), if yi = 1

0 otherwise,
(4.4)

where p1(xi) is the probability of pixel xi to be assign the foreground label according to
a learned prior shape probability map (see Algo. 1) and p2(xi) refers to the probability of
pixel xi to belong to the foreground, based on the probability outcome of a decision tree
classifier (Hänsch [84]), trained on RGB features.

4.3.1.1 Shape Prior

The probability p1(xi) of pixel xi to be assigned to the foreground class is based on a
learned prior shape probability map. Every detection rectangle contains regions of pixels
that do not correspond to the object of interest such as the corner areas of the rectangle.
Using a shape prior, these regions will be assigned a low probability value. An example
of a prior probability map is given in Fig. 4.2(a) with the generation process provided by
Algo. 1.

4.3.1.2 Decision trees ensemble

As prior probability, p1(xi) is completely independent of the measured RGBD data of
a specific image. A data-dependent initial estimate is represented by p2(xi), which
corresponds to the probabilistic output of a pixel-wise classification algorithm known as
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(a) (b)

Figure 4.2: Unary potentials: (a) Shape prior map, (b) ProB-RF classifier.

Algorithm 1 Generate human shape prior map
Require: A sequence of label images ym and corresponding RGB images Im of a person

in the scene:
S = {(y1, I1), (y2, I2), . . . , (yn, In)}

1: R = ∅
2: for (ym, Im) ∈ S do
3: Extract detection rectangle from image Im using the deformable part model ap-

proach from Dubout et al. [10]
4: Extract the same rectangle from the corresponding label image ym

5: Resize rectangle to a 128× 64 sized image rm

R := R ∪ {rm}

6: end for
7: return The probability map of R

the Projection-Based Random Forest (ProB-RF), proposed by Hänsch [84]. The ProB-RF
classifier is an ensemble supervised learning technique, which means that is not based only
a single classifier but on multiple sub-optimal classifiers. The combined output from all
these classifiers is expected to be more accurate compare to the output of a single classifier.
The final prediction should assign each pixel a posteriori probability belonging to either
the foreground or background based on many simple features extracted implicitly by the
decision trees themselves. Specifically, these futures can be categorised into low-level
features and high-level features. Low-level features are colour, grey and binary features
whereas high-level features model radiometric, shape and semantic information.
The ProB-RF is a two-stage process: the first stage is purely based on low-level features,
which provide an a-priori knowledge about the objects in the scene. This information is
then used in the second stage for calculating the high-level features and predicting the final
categorisation result. Figure 4.2(b) shows the estimated classification map of an exemplary
scene. However, this first pixel-wise probability estimate serves as an additional cue to the
shape prior and is now used in the global optimisation framework of CRFs. Figure 4.2(b)
shows the estimated classification map of an exemplary scene. However, this first pixel-
wise probability estimate serves as an additional cue to the shape prior and is now used in
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Figure 4.3: Cost assigned to neighbourhood pixels.

the global optimisation framework of CRFs.

4.3.2 Pairwise Potentials
Edge potentials capture the similarity between variables lying within a local neighbour-
hood. Two random variables sharing the same label should also be assigned a cost greater
than zero. Specifically,

ψij(y,x) =

{
αij if yi = yj

0 otherwise,
(4.5)

Taking advantage of the richness of RGBD data provided by the Kinect sensor, two
variables taking the same label should not be separated by an edge, should have similar
colours, similar depth and similar normal orientation. All these relationships are modelled
by the following edge potentials:

4.3.2.1 Canny Edges

Canny edge extractor is a very known operator for extracting strong edges in an image.
Within this framework, Canny edges were used for finding the boundaries between areas
and objects, assigning a value of 1 for neighbourhood pixels that do not lie on a Canny
edge and 0 otherwise1.

4.3.2.2 Colour Distance

Two neighbourhood pixels having similar RGB colour should also be assigned the same
label. However, in terms of colour quality, RGB space does not separate the luma (image
intensity) from chroma (colour information). For computer vision applications, one may
want to separate colour components from intensity for robustness against fast lighting

1This is the only edge potential within this work that does not follow the penalisation term proposed in
Fig. 4.3
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(a) (b) (c) (d)

Figure 4.4: Edge potentials. (a) Canny edges, (b) HSV colour distance, (c) 3D Euclidean distance,
(d) surface normals. (Best viewed in colour)

changes or shadows. After performing this conversion, the Euclidean HSV distance
between two neighbourhood pixels is defined as follows:

αij = exp

(
− ∥ci − cj∥

σc

)
(4.6)

where ci, cj correspond to the HSV values of pixels i and j respectively and σc is a
bandwidth parameter whose value is set through cross validation.

4.3.2.3 3D Euclidean Distance

Two neighbourhood 3D points that are very close to each other are more likely to share
the same label. This relationship is expressed as follows:

αij = exp

(
− abs(pi − pj)

Tnj

σn
− ∥pi − pj∥

σd

)
(4.7)

where pi, pj correspond to the 3D position of the points i and j respectively, nk is the
surface normal at point pj and σn, σd are bandwidth parameters whose values are defined
by cross validation.

4.3.2.4 Angles Normal

Two 3D points lying on the same part of the object should have similar normal orientation.
This relationship is expressed as follows:

αij = exp

(
− θij
σθ

)
(4.8)

where θij is the angle between two neighbourhood normals ni and nj defined as:

θij = arccos

(
< ni,nj >

∥ni∥∥nj∥

)
(4.9)

and σθ is a bandwidth parameter whose value is specified by cross validation.
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Algorithm 2 Generate RGBD features
Require: S = {(y1,d1), (y2,d2), . . . , (yn,dn)}

1: D = ∅
2: for (ym,dm) ∈ S do
3: Compute all features xm

D := D ∪ {(ym,xm)}

4: end for
5: return D

4.4 Learning
As discussed in Sect. 3.7, the learning process involves finding a set of weights w that
can maximise the margin between a current segmentation result y′ and its corresponding
label image y, assuring that △(y,y′) > 0 for y ̸= y′. If {x1,x2, . . . ,xm} represents a
set of RGB and depth features and {y1,y2, . . . ,ym} are the corresponding ground truth
images, the goal is to learn a set of parameters w that maximise the likelihood:

max
w

∏

m

p(ym | xm) (4.10)

The training set was generated according to Algo. 2.
Influenced by the work of Szummer et al. [85], graph cuts were used to learn the parameters
of the proposed energy function 4.3. Satisfying the submodularity constrains (see Appx.
A), graph cuts could ensure an efficient maximum margin learning of the parameters with
an exact solution, preserving generalisation for new images via a large margin regulariser.
The one-slack margin rescaling SSVM (see Sect. 3.7) was employed for efficiently solving
the minimisation problem and finding the set of weights w that best represent the given
training set. The learning process is presented by Algo. 3. Here, C and ε are constant
values, w = [wN , wE ] are the weights that have to be optimised for a given training set D ,
ξ is a slack variable and ∆ corresponds to the Hamming loss. Depending on the expected
accuracy, different loss functions could be used. Furthermore, it must be stressed that the
constant parameter C, also known as the slack penalisation parameter, shouldn’t be set to
a very high or low value because this can significantly effect the size of the final margin
of the classifier.
Within the learning process, the goal is to enforce that the ground truth energy will have
the lowest energy value from all other labelings. If this constraint is not satisfied, or if
the margin is not achieved, this label solution will be added in the constraint set W . This
process continues until the values of the weights have converged. According to Joachims
et al. [86], the objective function is quadratic to w and linear to the constraints, also
known as the quadratic programming problem (Cottle et al. [87]). The advantage of
this objective function is that a global minimum can be reached in polynomial time. The
minimisation procedure was achieved by implementing the Nesterov non-linear quadratic
algorithm, which is part of a family of algorithms known as interior point solvers (Boyd
and Vandenberghe [88]) and are commonly used for minimising objective functions of the
form 4.11.
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Algorithm 3 The one-slack margin rescaling Structured Support Vector Machine
Require: A set of training examples, constant values C, ε

1: W ← ∅
2: repeat
3: Update the parameters w = [wN , wE ] to maximise the margin

min
w, ξ

1

2
∥w∥2 + C ξ

s.t w ≥ 0, ξ ≥ 0

1

M

M∑

m=1

E(ŷm,xm) − E(ym,xm) ≥
1

M

M∑

m=1

∆(ym, ŷm) − ξ

∀ (ŷ1, . . . , ŷM) ∈ W

(4.11)

4: for (ym,xm) ∈ D do
5: ŷm ← argminy E(ym,xm)
6: end for
7: W ← W ∪ {ŷ1, . . . , ŷM}
8: until 1

M

∑M
m=1∆(ym, ŷm) − E(ŷm,xm) + E(ym,xm) ≤ ξ + ε

4.5 Quantitative analysis
The proposed algorithm was tested and evaluated on people with different poses and
costume changes observed in a simulated indoor environment of a train wagon (see Appx.
B). Working exclusively with humans, the proposed work could be potentially generalised
for recognising a variety of active objects in the scene.
Edge potentials defined on depth measurements require high precision between points
lying in the local neighbourhood. Although the objective was to develop a 3D object
recognition system using raw RGBD data, the Kinect sensor was calibrated for enhancing
the quality of the observed data (see Appx. C).
A total of 25 sequences were generated, every sequence containing 200 frames. From all
5000 images, 3200 images over 16 sequences were used for training and the rest for testing.
The training set was used for learning the weights of the Platt calibration, structured SVM
and shape prior. For the ProB-RF, a 4-fold cross validation approach was used, taking
into account all 25 sequences. This means that the algorithm was trained on 3 randomly
selected sets of sequences and tested on the remaining sets of sequences. The training and
testing times for each fold are provided in Tab. 4.1. Some classification results are shown
in Fig. 4.5.
To the best of my knowledge, no publicly available RGBD dataset exists that could provide
label images with ground truth detection boxes. Generating ground truth label images
is a very time consuming process as it requires a lot of manual work by the user. For
eliminating the effort, reference images were generated using the approach of Shotton et
al. [30], a well known human pose estimation algorithm that was also commercialised for
Kinect games.
The training set of the publicly available INRIA Person dataset was used for learning
the weights for the classifiers for both Dalal and Triggs [8] and Dubout [10] approaches,
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4.5. Quantitative analysis

Figure 4.5: Probability distribution derived from the decision tree classifier. Top row: raw images
from a sequence. Bottom row: a per-pixel a posteriori probability distribution. High intensity of a
pixel indicates high probability of that pixel to belong to a person. (Best viewed in colour)

Folds Average time
per fold

Standard
deviation per

fold

Average time
per sequence

Training
time

4-15 1462.20 35.13 365.55
0-3,8-15 1482.31 28.09 370.58
0-7,12-15 1487.15 30.10 371.79

0-11 1496.49 31.30 374.12

Testing
time

0-3 1092.39 53.17 273.10
4-9 1101.13 43.73 275.28
8-11 1102.03 46.43 275.51
12-15 1080.47 45.66 270.12

Table 4.1: Training and testing times per fold for the decision tree classifier (in milliseconds).

following a bootstrapping process. Subsequently, the resulting classifiers were tested on
the validation set for learning the parameters of the Platt calibration curves using a Newton
non-linear optimiser. For a detection rectangle to be assigned to the background class, a
probability threshold of 0.6 was given.
The average computational times recorded for a complete scene are presented in Fig. 4.7.
It is apparent from the pie charts that the node and edge potentials require minimum
computational effort while the object detectors are computationally more expensive. For
a VGA image resolution the proposed implementation runs on≈ 1.5 FPS using the global
HOG human representation and ≈ 2.4 FPS for the improved DPM approach. Graph cuts
require the least effort (0.7 ms) as they can be solved in polynomial time. All experiments
were conducted on a DELL M4800 Workstation with an i7-4800MQ CPU at 2.70GHz
processor and 16GB RAM. The complete pipeline was designed in a multithreaded fashion,
parallelising all computations (Boost library [89]).
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(a) (b)

Figure 4.6: Precision-Recall and ROC curves for the INRIA Person dataset. The precision-recall
and ROC curves are a result of Dalal and Triggs algorithm [8] and Dubout et al. [10]. (Best viewed
in colour)

4.6 Qualitative analysis
The qualitative analysis was divided into two main parts: evaluating the performance of
the detectors and subsequently the quality of the segmentation as a consequence of the
quality of the detection boxes. The precision-recall and ROC curves for both detectors
were calculated using the training set provided by the INRIA people dataset. Results in
Fig. 4.6 showed that the performance of Dalal and Triggs is much higher than Dubout
et al. Likewise, the ROC curves showed that the accuracy of Dalal and Triggs object
detection algorithm is much higher compare to Dubout’s algorithm. Specifically, for a
high detection threshold, the Dalal and Triggs algorithm provides a precision and recall
≈ 100% and when the detection threshold begins to drop (relaxing the parameter), false
negatives begin to appear, which makes precision go down. However, the point where the
precision drops for Dubout’s approach is in a much earlier point in time compare to Dalal.
This means that the former is more sensitive and can provide false positive results even
for a higher detection threshold. Similar interpretation could be given for the ROC curves
respectively.
Furthermore, it should be stressed that the performance of the detectors is independent
from the quality of the detection boxes. Thus, an additional metric was required for
checking the overlapping accuracy against the corresponding ground truth detection box.
Everingham et al. [90] evaluated the accuracy of the object detectors by measuring the
area of the overlapping bounding box derived by the predicted bounding box (Bp) and the
corresponding ground truth box (BGT ) using the following relation:

overlapping =
area(Bp ∩BGT )

area(Bp ∪BGT )
(4.12)

To this end, for a predicted detection box to be considered as true positive, the area a of
the overlapping region threshold was set to be greater than 50%. The accuracy of both
detectors was checked on 1800 test images capturing a person undergoing different poses
in the scene. Ground truth detection boxes were extracted from the label images of the
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Figure 4.7: Average recognition time per frame. The decision tree classifier is computationally
more expensive compare to all other potentials. The improved version of the deformable model
introduced by Dubout et al. [10] requires more time compare to the fixed-template-style HOG-
based detector of Dalal and Triggs [8]. For a VGA image resolution, the graph cut algorithm does
not preclude a real-time operation for the segmentation. (Best viewed in colour)

corresponding test images by finding the minimum area bounding rectangle of the largest
connected component (Suzuki et al. [91]). The overlapping accuracy achieved was 64.2%
(Dalal) and 72.3% (Dubout) respectively. As expected, the DPM approach provides a
better localisation compare to Dalal approach as it uses part-based star-like configuration
of HOG features to infer the position of the bounding box. Bounding boxes with low
foreground probability were removed during testing.
The segmentation accuracy was checked within the area of the ground truth detection
boxes and the ones computed from the detectors. However, in cases of extreme poses,
the detection box would partially capture the person in the scene. For instance, when a
standing person stretches his hands horizontally, the detection box would fail to include
the complete part of the arms. On the other hand, the ground truth detection box is
generated using the complete body and therefore comparison in this case is not reliable.
This problem was solved by extracting part of the label image that corresponded to the
area of the given detection box.
The segmentation approach was assessed using three different metrics:

• Hamming Loss: This metric counts the number of mis-labelled pixels in the predicted
image y′ with respect to the corresponding ground truth image y, expressed by:

△HL(y,y
′) =

|y|∑

i=1

y
′

i ⊕ yi (4.13)

• Normalised Hamming Loss: It was first introduced by Teichman et al. [22] and it’s
considered a hard penalisation metric compare to other loss functions, as it gives a zero
loss if the number of incorrectly labelled pixels is equal or exceeds the number of pixels
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Metric

Edge Potentials
Canny Edges Colour Distance 3D Euclidean Distance Surface Normals

Dalal and Triggs

△HL
8032.102 8052.325 7988.132 8121.021
± 2477.052 ± 2433.194 ± 2401.440 ± 2022.032

△N−HL 0.583± 0.132 0.511± 0.128 0.592± 0.105 0.554± 0.124
IOU 0.665± 0.103 0.523± 0.044 0.702± 0.022 0.698± 0.058

Dubout et al.

△HL
8012.790 7907.000 7911.910 7936.520
± 2578.160 ± 2308.790 ± 2205.740 ± 2178.710

△N−HL 0.646± 0.113 0.651± 0.104 0.651± 0.102 0.650± 0.098
IOU 0.705± 0.093 0.712± 0.076 0.710± 0.075 0.710± 0.074

Ground Truth Detection Box

△HL
5508.970 5566.37 5464.600 5504.360
± 1626.130 ± 1667.510 ± 1590.560 ± 1896.560

△N−HL 0.758± 0.063 0.755± 0.069 0.760± 0.064 0.758± 0.079
IOU 0.799± 0.050 0.797± 0.056 0.801± 0.052 0.798± 0.071

Table 4.2: Metric analysis on different edge potentials. Every row represents a different metric
evaluator; Every column corresponds to a different edge potential; Top table presents segmentation
results produced by the ground truth detection box; Bottom table presents segmentation results
from [10].

corresponding to foreground in the label image. Specifically, this metric is formulated
as follows:

△N−HL(y,y
′) = 1−min

(
1,

|y|∑

i=1

y
′
i ⊕ yi∑|y|

j=1 1[yj = 1]

)
(4.14)

• Intersection over union: This is an segmentation metric introduced by Everingham et
al. [90] and it is formulated by:

seg. accuracy =
true pos.

true pos. + false pos. + false neg.
(4.15)

where true positives represent the number of correctly classified pixels, false positives the
number of wrongly classified pixels and false negatives the number of pixels that were
wrongly not classified as true positive.
Qualitative results are provided in Tab. 4.2 for all metrics, evaluated on randomly selected
images from the generated test sequences. It is evident that all metrics computed by the
ground truth bounding box show an overall improvement in the segmentation accuracy,
outperforming the results produced by the detection boxes of Dalal and Dubout. Fur-
thermore, comparing the metrics computed by the different edge potentials, it is easy to
perceive the insignificance between the values. This can be explained as follows: the
proposed method does not require any prior information from the user for enforcing the
min-cut towards a human shape (Teichman et al. [22]) but performs the min-cut using
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Figure 4.8: Qualitative image segmentation results of different human poses. These figures
outline the improvement in quality of the proposed segmentation approach using the ground truth
box rather than the detection box provided by Dubout et al. [10]. From top to bottom: segmentation
results using Dalal and Triggs [8]; segmentation results using Dubout et al. [10]; segmentation
results using the bounding box extracted by the labelled images; labelled images. (Best viewed in
colour)

edge potential values that correspond to node potentials larger than a predefined probabil-
ity threshold (85 %). Thus, only edge potential values that lie at the borders of the object
should effect the cut.
Furthermore, the proposed segmentation approach was compared against the approach of
Zheng et al. [92]. Their method is based on a new form of convolutional neural network that
combines Convolutional Neural Networks and Conditional Random Fields probabilistic
models. Specifically, they proposed a Conditional Random Field energy function that is
based on a Gaussian pairwise potential function and a mean-field approximate inference
as Recurrent Neural Network (RNN). This network, named as CRF-RNN, is then given to
a CNN to obtain a deep network that has properties of both CNNs and CRFs.
To ensure a fair comparison, both approaches were tested on the test image set acquired
in the test field by omitting the detection boxes and replacing them with the minimum
bounding boxes generated from the label images, ensuring a complete body encapsulation.
The parametersw of the proposed energy function were re-trained using as edge potentials
the product of all edge potentials presented in Sect. 4.3.2. The proposed segmentation
approach had an overall segmentation improvement of 58.2 % over the complete test
set. Visual results are given in Fig. 4.10. One can see that the proposed segmentation
approach provides better segmentation results for extreme poses compare to the CRF-CNN
(rows one, three and four respectively). However, it should be stressed that the CRF-CNN
approach performed better for some upright poses (see rows two, five and six respectively).
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One of the main reasons may be that the authors used a pool of≈ 75.000 training images,
which means that a much larger variation in clothing, poses and number of people is
provided. It is believed that using a similar RGBD-based training set could provide an
even larger improvement over the CRF-CNN approach. The bandwidth parameter values
related to the edge potentials were set to: σc = 0.3, σn = 0.5, σd = 0.5, σθ = 0.2.

4.7 Conclusions
In this chapter an approach was introduced for detecting and segmenting human in-
stances in RGBD space based on Kinect-like RGBD data. The detection performance was
evaluated on a single HOG-based feature representation and a part-based HOG-feature
representation. Results showed that part-based representations provide more accurate, but
also more computationally expensive detection results compare to the former, allowing
higher degree of spatial variance between body parts and thus, resulting into a more robust
detection box.
In order to determine the spatial extent of the person within the detection box, the proposed
method makes use of a rich set of RGB and depth features modelled within a Conditional
Random Field pairwise energy function. For unary potentials with a probability larger
than a predefined threshold, using any of the edge potentials produced good segmentation
results. This means that the unary potentials play an integral role for the segmentation
task. Comparing the proposed method to the CRF-CNN approach (Zheng et al. [92])
showed improved results mostly for extreme human poses. However, is should be stressed
that in some normal human poses the CRF-CNN produced better results, which is assumed
to be because of the larger number of available training data.
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4.7. Conclusions

Figure 4.9: Results of human instance segmentations in RGBD space. (Best viewed in colour)
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Figure 4.10: Qualitative comparison results. First column: raw RGB images. Second column:
CRF-RNN results. Third column: Proposed approach. Forth column: label images. (Best viewed
in colour)
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Chapter 5

Human Motion Estimation and
Tracking in RGBD

5.1 Introduction
Object recognition is known as the process for detecting instances of semantic objects from
camera data. However, non-rigid objects such as humans do not have a fixed representation
but undergo significant shape deformations in time. This means that the task of object
recognition could also be extended to the task of understanding object motion. With the
use of low-cost commodity sensors, such as the Microsoft Kinect, the human motion could
be modelled with more human-like visual perception data using the real time RGB and
depth information provided by the sensor.
This chapter introduces a method for capturing and tracking people’s shape deformations
in time in a dynamic indoor environment from Kinect-like RGBD data. The proposed
methodology consists of two main components: (1) a workflow that enhances the accuracy
of an octree-based foreground estimation algorithm proposed by Kammerl et al. [12] and
(2) the use of the Minimum Volume Enclosing Ellipsoid algorithm for capturing the
spatio-temporal changes of the person in a 3D scene.
The motivation behind the work was to understand normal and abnormal behaviours of
people in an indoor public environment – such as a train wagon – from a network of
multiple Kinect sensors.

5.2 Extract the geometry of human motion
The current section introduces an approach for monitoring and tracking human poses in
3D space from Kinect-like RGBD data. An outline of the proposed workflow is provided
by Algo. 4 and consists of two main components: (1) a filtering process for improving an
existing octree-based 3D foreground estimation approach and (2) a method for capturing
and retrieving the geometry of a foreground instance. Specifically, steps 1–8 describe
a process for improving the algorithm proposed by Kammerl et al. [12] and extracting
accurate foreground masks and steps 9–12 use the Minimum Volume Enclosing Ellipsoid
(MVEE) algorithm proposed by Moshtagh [13] for capturing and deriving meaningful
information about its shape and the way it deforms in time. Each step of the algorithm is
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Algorithm 4 Extract the geometry of a human shape
Require: A pair of point clouds representing the background static scene and the current

scene
1: Trim both point clouds in the depth direction applying a pass-through filter
2: Extract foreground objects from the scene using the approach of Kammerl et al. [12]
3: if foreground exists then
4: for all foreground do
5: Map the foreground in an image plane using a perspective projection
6: Check if a valid contour exists using the contour extraction algorithm of Suzuki

et al. [91]
7: if contour is valid then
8: if contour size is larger than a predefined threshold then
9: Compute the convex hull for this dataset

10: Find the ellipsoid enclosing the human figure using the MVEE algo-
rithm of Moshtagh [13]

11: Decompose its variance-covariance matrix using PCA
12: Smooth the data using Kalman Filter [11]
13: end if
14: end if
15: end for
16: end if
17: return Ellipsoid information for every human instance in the scene

extensively analysed in the following sections.

5.2.1 Point Cloud Depth-Based Trimming
One major drawback of the Kinect sensor is the discretisation error in the depth mea-
surements, which increases quadratically with respect to the distance from the sensor.
According to the Kinect manufacturer, the ideal working distance should be in the range
of 0.5 m – 4.5 m. Therefore, voxels lying outside this range should be removed. This was
achieved by trimming the point cloud in the Z direction using a pass-through filter.

5.2.2 Detecting Spatial Changes using an Octree
The foreground extraction algorithm proposed in Algo. 4 is based on the approach
introduced by Kammerl et al. [12] for the problem of real time point cloud compression
and streaming. The method works by recursively encoding the structural differences
between the octree representations of two point clouds based on a logical bitwise XOR
(exclusive OR1) operator. These structural differences correspond to the spatial changes
between the clouds (see Fig. 5.1).
An octree (Meagher [93]) is a tree based data structure in which every internal/leaf node
has exactly eight children. Each node in the octree subdivides the space it represents into
eight octans. For the case of object extraction, the spatial changes encode the movement

1Exclusive or is a logical operation that outputs true only when both inputs differ.
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00000100

0100001

00011000 00100000

Serialized Octree A:
00000100 010000001 00011000 00100000

00000100

0100010

00011000 00000010

Serialized Octree B:
00000100 010000010 00011000 00000010

Figure 5.1: Comparing the octree data structures of two point clouds. (Source: The above figure
has been reproduced from the work of Kammerl et al. [12])

of the object in the 3D scene. Spatial changes in the leaf nodes, such as sparsity of points
and number of neighbours, can give an indication of these spatial changes. Depending
on the predefined size of the leaf node, detection sensitivity rate and processing time may
vary. Large leaf nodes are faster to process but provide less information of the moving
foreground and very small leaf sizes are able to capture detailed spatial changes but with
a substantial cost in the computation performance.

5.2.3 Perspective Plane Projection
The pinhole camera model (Hartley and Zisserman [94]) describes the mathematical
relationship between a 3D point and its projection onto a 2D plane (usually image plane).
This 2D↔3D mapping is also known as a perspective projection and can be written as:

x = f
X
Z
+ x0

y = f
Y
Z
+ y0

(5.1)

where (x, y) are the projected image coordinates of the 3D point (X, Y, Z), f represents
the focal length of the camera expressed in pixel units and (x0, y0) corresponds to the
principal point of the sensor. From the above formulations, it is clear that the calibration
accuracy (see Appx. C) plays an important role for the quality of the mapping.

5.2.4 Convex Hull
In the field of computational geometry, convex hull of a shape is the smallest convex
polygon containing all points of that object. In its 2D representation, a convex hull is
defined by a number of "facets" composed of lines and edges where in 3D its always
defined by a set of planar triangles.
An important property of the convex hull is that it does not introduce new values but uses
existing ones from the original dataset. This means that it is expressed by a subset of
points referenced in the original set. For a 3D human figure, the corresponding convex
hull is defined by a set of 3D points located on its body silhouette. These points are then
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(a) (b) (c) (d)

Figure 5.2: Foreground masks for different human poses in an indoor environment. From left to
right: (a) raw point clouds capturing different human poses in a scene; (b) extracted foreground
masks using the proposed filtering approach in Algo. 4; (c) convex hull of the human figures; (d)
result of the Minimum Volume Enclosing Ellipsoid introduced by Moshtagh [13]. (Best viewed
in colour)

given as an input to the Minimum Volume Enclosing Ellipsoid algorithm (Moshtagh [13])
for deriving the best fitted encapsulated ellipsoid. Using the complete set of foreground
points would lead to a dramatic increase of the execution time of the proposed workflow.

5.2.5 Ellipsoid for human motion analysis
The shape of an ellipsoid is a well suited mathematical representation of the human
figure. Compare to a sphere, an ellipsoid has higher degrees of freedom, which helps to
capture a larger set of human poses. The Minimum Volume Enclosing Ellipsoid algorithm
(Moshtagh [13]) was used to fit an ellipsoid to a human pose. The solver is based on the
Khachiyan algorithm [95], which is able to solve non-linear convex functions in polynomial
time.
Let X = {X1,X2, . . . ,Xn} ∈ R3 correspond to a set of 3D points representing the
human figure. According to Sect. 5.2.4, the minimum bounding ellipsoid could be
computed using only the convex points proposed from the given set. Therefore, let
Xconvhull = {X1, . . . ,Xm} ∈ R3 be a subset of this dataset (Xconvhull ⊂ X). According
to Moshtagh [13], the problem of determining the ellipsoid of least volume given the
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Figure 5.3: Mathematical representation of an ellipsoid.

convex set Xconvhull, is equivalent in finding a vector Xc ∈ R3 representing the center of
the ellipsoid and a 3×3 positive definite symmetric matrixC (that is a variance-covariance
matrix) that satisfies the following condition:

minimize
C, Xc

det(C−1)

subject to (Xi −Xc)
TC(Xi −Xc) ≤ 1, i = 1, . . . , n

C > 0.

(5.2)

It should be pointed out, however, thatXc is not placed precisely at the center of the human
figure but rather deviates depending on its shape variation. For instance, in situations where
a standing person raises his hands, the center of the ellipsoid is not longer positioned at
the center of his stomach but at a higher point. Hence, depending on the pose variation,
the center of the ellipsoid will deviate from the true center of the person.
After convergence is reached, satisfied a pre-defined tolerance value, all information
regarding the geometry of the ellipsoid is encoded within a 3 × 3 variance-covariance
matrix. Principal Component Analysis (PCA) is then applied for finding the eigenvalues
and eigenvectors of the matrix. For a covariance matrix representing a set of random
data, the largest eigenvalue corresponds to the dimension and direction with the strongest
correlation in the dataset, also known as the principal component. However, for the
covariance matrix produced by the MVEE algorithm, the length of every eigenvector not
only represents the amount of correlation in the corresponding direction, but captures the
complete variation of the data in that direction.
Let (λ1, λ2, λ3) represent the eigenvalues of a 3 × 3 covariance matrix C, satisfying the
condition 5.2. For a human figure, the first eigen-value corresponding to the principal
component should be much larger than the other two eigen-values (λ1 ≫ λ2 > λ3) due to
the shape of the human figure.

If the total variation of the dataset (expressed in %) is equal to λT =
3∑

i=1

λi, then each
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Figure 5.4: Ellipsoid representation of a human figure. (Best viewed in colour)

semi-major axis a, b and c will have a total amount of variation corresponding to:

vara =
λ1
λT
× 100, varb =

λ2
λT
× 100, varc =

λ3
λT
× 100 (5.3)

The length of each semi-major axis will also be equal to:

a =

√
1

λ1
, b =

√
1

λ2
, c =

√
1

λ3
(5.4)

Every major or minor axis intersects the surface of the ellipsoid at two points known as
vertex points or fuci points. Amongst the variety of representations for parameterising
the position of a vertex, the Cartesian representation is the most commonly used and it’s
formulated as follows:

X = Xc + a cosu cos v

Y = Yc + b cosu sin v

Z = Zc + c sinu

(5.5)

where (X,Y,Z) represents a vertex position, and (u, v) are the rotation angles of the axis
intersecting the ellipsoid at that vertex. The rotation angles for every vertex point are
provided in Tab. 5.1.
A local fictitious coordinate system was defined and positioned at the center of the ellipsoid,
remaining invariant to the ellipsoid shape variations. Specifically, this local coordinate
system acts as a reference for the rotation changes of the ellipsoid, providing some reliable
information about the movement of the object in the scene. All three axes were assigned
to a pre-defined reference axis for monitoring the changes performed from each ellipsoid
representation. These constraint rotation angles were computed according to Algo. 5.
The term human approximated zero angle movement refers to the upright position of a
standing person with his arms placed in vertical position. This implies that very small
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Figure 5.5: Ellipsoid representations of two people fighting. (Best viewed in colour)

xa x′
a xb x′

b xc x′
c

u 0 π 0 0 π
2
−π

2

v 0 0 π
2
−π

2
π −π

Table 5.1: Rotation angles for every semi-major and semi-minor axes of the ellipsoid. Every axis
intersects the surface of the ellipsoid at a specific position based on a set of two angles (u, v).

variations are present, depicted by the very small values of the constrained rotation angles.
As stated at an earlier point in this section, every axis of the ellipsoid is assigned to
one of the axis of the reference system. Specifically, the reference axis X is assigned
to the ellipsoid axis b, characterising the width of the person, the Y axis to the a axis
corresponding to the depth of the person and the Z axis to the axis c representing the
height of the person.
Finally, the size of the human figure was approximated by the volume of the ellipsoid
computed by:

V = u0 det (C−1)
−1/2 (5.12)

where u0 represents the volume of the unit hypersphere in n dimensions and its equal
to 4π/3 for a 3D space. The geometric representation of the proposed approach can be
visualised in Fig. 5.3.

5.3 Experimental Results
Different types of human poses were captured in an indoor simulated environment (see
setup configuration in Appx. B) for the purpose of evaluating the accuracy of Algo. 4. The
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Algorithm 5 Angle of each ellipsoid axis with respect to a 3D local reference system
Require: xa, x′

a, xb, x′
b, xc, xc

′

1: Compute the direction vector of each ellipsoid axis:

x
′′

a = xa − x′
a, x

′′

b = xb − x′
b, x

′′

c = xc − x′
c (5.6)

2: Compute angles ωa, ωb and ωc corresponding to a predefined reference axis:

ωa = arccos

(
x

′′
a ·Y

∥x′′
a∥ · ∥Y∥

)

ωb = arccos

(
x′′

b ·X
∥x′′

b∥ · ∥X∥

)

ωc = arccos

(
x′′

c · Z
∥x′′

c∥ · ∥Z∥

)
(5.7)

3: Check in which octant area each direction vector corresponds to:

posx′′a ← CheckOctantArea(x′′

a)

posx′′b
← CheckOctantArea(x′′

b)

posx′′c ← CheckOctantArea(x′′

c)

(5.8)

4: if posx′′
a

is within octants V, VI, VII or VIII then

ωa = −ωa (5.9)

5: end if
6: if posx′′

b
is within octants V, VI, VII or VIII then

ωb = −ωb (5.10)

7: end if
8: if posx′′

c
is within octants III, IV, VII or VIII then

ωc = −ωc (5.11)

9: end if
10: return ωa, ωb, ωc

robustness of the proposed filtering method was compared against the original approach
of Kammerl et al. [12] and a simple 3D background subtraction approach that classifies
every voxel in the scene as foreground if the difference to its corresponding point in the
reference static cloud is larger than a predefined value. Ground truth foreground masks
were generated using the approach of Shotton et at. [30], a depth-based human pose
algorithm that was later on commercialised for Kinect games. Figure 5.8 shows results
from different behaviours in a scene acquired from a multi-Kinect sensor system. It is
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Figure 5.6: Trajectories of the center of the ellipsoid projected in X, Y and Z planes. (Best
viewed in colour)

clear that the proposed method outperforms the other two approaches, as it is able to filter
most of the noisy foreground blobs, resulting to a more accurate foreground mask.
According to Appx. B, evaluation and testing was performed in an indoor environment that
emulates the internal part of a train wagon. However, existing state-of-the-art depth-based
human pose estimators (see Sect. 2.2) are not able to cope with the different environmental
changes in the scene such as fast illumination changes and partial occlusions, leading to
erroneous predictions. Some of the reasons to be discussed is either because the viewing
angle of the Kinect sensors is inappropriate for these kind of algorithms or because feature
based approaches are highly sensitive to noisy depth maps or because features based
approaches are not suitable enough to capture the complexity of the human shape.
The parameters involved in the proposed workflow were empirically defined after an
extensive evaluation and testing: the leaf size of the octree, which controls the accuracy
of the foreground mask was set to 0.1 m. The trimming of the point cloud was performed
using a pass-through filter, preserving all voxels within the range of 4 m. Every contour in
the binary mask with a size less than 1000 or larger than 7000 pixels was removed. Finally,
the global distance threshold for assigning a voxel to the foreground using the Euclidean
distance between a static background cloud and the current cloud was set to 5 cm.
A Kalman filter [11] was applied to smooth all extracted information of the ellipsoid and
remove noisy representations in the data sequence.
Figure 5.6 shows the trajectory of a person for the first 100 frames of a random sequence
along with the corresponding ground truth track. For a better visualisation of the 3D
trajectory, each dimension was mapped in its own coordinate plane. One can visually
observe that the proposed method follows the motion of the person much better compare
to the other two approaches. This could be explained by the fact that the foreground
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Figure 5.7: Tracking software. (a) Shape variations of a single person and (b) two people in the
scene from a network of four Kinect sensors. (Best viewed in colour)

noise is randomly distributed in the complete scene, which forces the ellipsoid to also
incorporate voxels that appear in extreme regions.
The produced trajectories were evaluated against the ground truth trajectory using the
following likelihood formulation:

L =
n∑

t=1

∥ Xt −XGP
t ∥

∥ XGP
t ∥ (5.13)

where Xt represents the position of the person in the scene at time t and Xt
GP is the

corresponding ground truth position of the person at time t. The evaluation was carried
out on a single person in the scene, achieving a likelihood of 82.4% for the proposed
method, 55.4% for the original method of Kammerl et al. [12] and 38.6% for the cloud
to cloud background subtraction approach. One of the main drawbacks of the proposed
method is the sudden increase of the size of the ellipsoid caused by the interaction between
two or more human instances in the scene. Although this problem is controlled given a
minimum and maximum size of an accepted blob size, it still remains an unsolved issue and
should be investigated in a future work. All parameters of the ellipsoid were saved in an
XML file (see Appx. D) and imported in a tracking visualiser2 for monitoring and tracking
the shape deformations of a person in the scene (see Fig. 5.7). The visual outcome of
the software was provided to psychologists in the anthropology and disaster management
field for classifying the behaviour of the people based on their shape deformations.

5.4 Conclusions
In this chapter a method was proposed for capturing and tracking people’s temporal
shape deformations in a dynamic indoor environment using Kinect-like RGBD data.
The proposed methodology consisted of two components: (1) a workflow that enhances
the accuracy of Kammerl’s [12] foreground estimation algorithm and (2) the use of
the Minimum Volume Enclosing Ellipsoid algorithm introduced by Moshtagh [13] for

2Visualisation was provided by an industrial partner
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capturing the spatio-temporal changes of the moving objects in a 3D scene. For the
first part, the filtering pipeline proposed in Algo. 4 showed a significant improvement
over the original approach, providing accurate foreground masks even under different
environmental conditions. The complete filtering workflow was performed in real-time
independently from the amount of people present in the scene.
In the second part, the foreground mask from the previous step was used by the Minimum
Volume Enclosing Ellipsoid algorithm for finding the best fitted ellipsoid representation
for the given human pose. Results showed that the computational time of the algorithm
does not affect the overall real-time performance of Algo. 4 due to the few number of
silhouette points proposed by the convex hull algorithm. However, the accuracy of the
parameters extracted from the variance-covariance matrix of the ellipsoid, depend highly
on the quality of the convex hull, which in turn depends on the accuracy of the foreground
mask. Kalman filter was used for smoothing the parameters of the ellipsoid, removing
noisy measurements and providing a better representation of the motion.
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5. Human Motion Estimation and Tracking in RGBD

Figure 5.8: Some qualitative results of the proposed method. From top to bottom row: raw point
clouds; foreground masks extracted from the original method of Kammerl et al. [12]; foreground
masks extracted from the cloud to cloud approach; ellipsoids encapsulating the foreground mask
from the proposed method; ground truth masks generated from the depth-based human pose
estimation algorithm introduced by Shotton et al. [30], implemented in the OpenNI [96] framework.
(Best viewed in colour)
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Chapter 6

Towards a Multi Camera 3D Object
Recognition System

6.1 Introduction
Human recognition has been an actively field of research from the early beginning of
computer vision, maintaining its popularity due to its wide range of applications. While
traditional approaches rely mostly on image-based information, with the appearance of
low-cost commodity sensors, such as the Microsoft Kinect, a new field of research emerged,
adding some advantages in the field. One of the most challenging problems in human
recognition is the identification of humans under partial occlusion either in the form of
intra-occlusion with other human instances or with respect to other objects in the scene.
While much research has been done in this direction, distinguishing between instances
depends strongly on the amount of their overlapping but also from the complexity of the
environment. In order to overcome this problem, additional information of the human
instances is required from different viewing angles of the scene.
Making use of the real-time RGB and depth information of the Kinect sensor, the afore-
mentioned problems could be performed directly in 3D space. Working purely with 3D
data has definitely some advantages that should be utilised to overcome the aforementioned
problems. Development of such a multi-sensor 3D object recognition system requires the
integration of information from all sensors present in the scene.
Therefore, the purpose of this chapter is to perform a preparatory work for a potential multi-
Kinect object recognition system, introducing a workflow for assessing the reliability of
merging point clouds from different sensors. The proposed work could be very useful
for future object recognition applications, where accurate combination of 3D data maybe
required.

6.2 Single Camera Orientation

6.2.1 Pinhole Camera Model
Pinhole camera model is known to be a special case of a general projective camera model.
The origin of the model, which is also the origin of a Euclidean coordinate system, is
defined at the centre of projection, where all points in 3D space are mapped from. The
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Figure 6.1: Pinhole camera geometry. (a) Pinhole camera geometry, where C represents the
projection center, p the principal point and X a point in 3D space; (b) shows a projection of the
pinhole camera model in the Y plane, demonstrating how a 3D point is mapped on the image plane
positioned at a distance Z = f from the principal plane. (Source: The above figures have been
reproduced with small modifications from the textbook of Hartley and Zisserman [94])

plane defined by the X and Y axis of the coordinate system is called the principal plane
and the plane where Z = f , is known as the image plane or focal plane. Every point
X = (X,Y,Z) in 3D space is mapped to a point on the image plane, defined by the
intersection of the line connecting point X with the projection centre and the image plane.
Also, the Z axis meets the image plane at the principal point, which is the mapping of
the projection center (also known as camera center) on the image plane. Working with
homogeneous coordinates in projective space, a 3D point X can be mapped to the point
x = [fX, fY,Z] plane defined at depth Z through the following transformation matrix:

⎡
⎣
fX
fY
Z

⎤
⎦ =

⎡
⎣
f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ (6.1)

where the 3× 4 matrix represents the ideal camera projection matrix with 7 DOF.
Equation 6.1 can be expressed in a more compact representation as follows:

x = diag(f, f, 1)[I | 0]X (6.2)

The aforementioned transformation is a simple linear relation, which relates the projected
3D point to a 2D point, positioned on an plane at depth Z. For getting the corresponding
2D point defined on the image plane at Z = 1, all elements of the point x must be divided
by Z.
When the principal point does not go through the center of the image plane, but rather
deviates from the ideal point in both x and y directions, then the ideal camera projection
matrix is upgraded to the Euclidean camera projection matrix case with 9 DOF taking the
following form:

⎡
⎣
fX + Zpx
fY + Zpy

Z

⎤
⎦ =

⎡
⎣
f 0 px 0
0 f py 0
0 0 1 0

⎤
⎦

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ (6.3)
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6.2. Single Camera Orientation

where p = [px, py] are the parameters (in pixel units) that define the offset from the ideal
point.
However, in the case of CCD cameras, the shape of a pixel may not be strictly square,
introducing an additional scaling factors mx and my for the X and Y axis respectively.
Furthermore, adding a skewness factor s representing the non orthogonality of the image
axes and its for most normal cameras set to zero. This is considered as the finite repre-
sentation of the camera projection matrix, has 11 DOF and its expressed in the following
form:

P =

⎡
⎣
cx s x0 0
0 cy y0 0
0 0 1 0

⎤
⎦ (6.4)

where cx = mxf, cy = myf represent the focal length of the camera in terms of pixels
dimensions, s corresponds to the skewing parameter defined by the ratio cy/cx and x0 =
mxpx, y0 = mypy express the principal point in pixel dimensions. Substituting 6.4 in 6.1,
the 2D↔3D mapping can be compactly represented by:

x = K[I | 0]X (6.5)

where,

K =

⎡
⎣
cx s x0
0 cy y0
0 0 1

⎤
⎦ (6.6)

is a 3 × 3 upper triangular matrix, known as the calibration matrix. The importance of
this matrix is that it encapsulates all internal (intrinsic) information of the camera.
Equation 6.5 considers that the position of the camera is at the origin of the Euclidean
coordinate system. Generally, all 3D points are defined within a coordinate system known
as the world coordinate system. The relationship of this system with respect to a camera
system is expressed by a non-ideal 3D rigid transformation matrix. Thus, for a 3D point
to be mapped in the camera coordinate system, the following transformation should hold:

X = R(Xw −C) (6.7)

where C = [Xc,Yc,Zc] represents the coordinates of the camera centre in the world
coordinate system, Xw is a 3D point defined in the world coordinate frame and R is a
3 × 3 rotation matrix representing the orientation of the camera coordinate with respect
to the world coordinate frame. Extending relation 6.5, Eq. 6.7 takes the form:

x = KR[I | −C]X (6.8)

where the projection camera matrix P = KR[I | −C] performs a general mapping of a
pinhole camera model and has 11 DOF.
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In the area of photogrammetry, the 3 × 4 projection camera matrix P is a reformulation
of the well known collinearity equation, expressed by:

x = x0 + f
r11(X− X0) + r12(Y− Y0) + r13(Z− Z0)

r31(X− X0) + r32(Y− Y0) + r33(Z− Z0)

y = y0 + f
r21(X− X0) + r22(Y− Y0) + r23(Z− Z0)

r31(X− X0) + r32(Y− Y0) + r33(Z− Z0)

(6.9)

where (x0, y0, f) are the interior camera parameters, (X0,Y0,Z0) represents the position
of the camera in the world coordinate system and (r11, . . . , r33) are the rotation parameters
of a right handed 3× 3 rotation matrix R. By definition, all parameters in the collinearity
equation should be expressed in metric units such as meters, centimetres or millimetres.
For strictly square pixels, the focal length f in the collinearity equation will be equal to
f = cx = cy.

6.2.2 Lense distortions
In photography, two types of distortions exist: optical and perspective. While optical
distortion is caused by the optical design of the lens (also known as "lens distortion"),
perspective distortion is caused by the position of the camera relative to the object of
interest or by the position of the object within the image frame. Within this context, image
points will be corrected for errors caused by optical distortions. This process of correction
is known as camera resectioning or camera calibration.
Camera calibration involves finding the parameters that will eliminate the offset in the
observed image points caused by the lens. Most important type of optical distortion is the
radial (symmetric) distortion, which causes an inward or outward position of the image
point from its ideal position. This error constitutes the major imaging error for most
camera systems and its mathematically defined by:

∆xrad = x [k1r2 + k2r
4 + k3r

6 + . . . ]

∆yrad = y [k1r2 + k2r
4 + k3r

6 + . . . ]
(6.10)

where (x, y) are the distorted coordinates of an image point, r defines the image radius of
the image point from the image’s principal point, and (k1, . . . , kn) are the radial distortion
coefficients that model the radial distortion curve. According to Eq. 6.10, the distortion
curve is modelled with a polynomial series (Seidel series) and has a quadratic representa-
tion, which increases depending on the radius distance of an image point to the principal
point. For most standard types of lenses, corrections larger than the third order parameter
(≤ k3) could be neglected without any significant loss in the accuracy of the points.
Furthermore, the sign of the distortion coefficients defines the form of the distortion.
According to Fig. 6.2, radial distortions can be represented either by a barrel distortion
or a pincushion distortion. It is generally said, that negative values of the distortion
coefficients correspond to a barrel distortion and positive values to a pincushion distortion.
Nevertheless, cases exist where a combination of these two distortions may occur, leading
to a distortion known as mustache distortion.
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6.2. Single Camera Orientation

Figure 6.2: Types of radial distortion curves. From left to right: No distortion, Barrel distortion,
Pincushion distortion and Mustache distortion. (Best viewed in colour)

Second form of distortion is the decentering (or tangential) distortion, which is caused by
physical elements in a lens not being perfectly aligned to the image plane. The source of
this error is mostly due to manufacturing defects, and can be compensated by the following
equation:

∆xdec = p1(r
2 + 2x2) + 2p2xy

∆ydec = p2(r
2 + 2y2) + 2p1xy

(6.11)

where p1, p2 correspond to the decentering parameters. This lens correction part can give
large values for low cost lenses (such as the ones embedded in surveillance cameras) and
smaller quantity distortion values for high quality lenses (e.g. space cameras).
Finally, the affinity and shearing parameters are used to describe deviations of the im-
age coordinate system with respect to the non-orthogonality and uniform scaling of the
coordinate axes. This is mathematically expressed by:

∆xaff = b1x + b2y
∆yaff = 0

(6.12)

where b1, b2 correspond to the affinity and shearing parameters respectively. It is note-
worthy that for the majority of cameras used in close range applications, b1 and b2 can be
neglected as they are set to zero.
Finally, all individual error terms could be summarised a follows:

∆x = ∆xrad +∆xdec +∆xaff

∆y = ∆yrad +∆ydec +∆yaff
(6.13)

Considering a radial distortion correction up to k3, all optical lens distortion parameters
k1, k2, k3, p1, p2, b1, b2 together with the focal length f and principal point x0, y0, define
the Brown 10-parametric calibration model [97].
Incorporating the optical correction terms from 6.13 into the collinearity Eq. 6.9, a more
complete mathematical representation of the collinearity equations is given by:

x = x0 + f
r11(X− X0) + r12(Y− Y0) + r13(Z− Z0)

r31(X− X0) + r32(Y− Y0) + r33(Z− Z0)
+ ∆x

y = y0 + f
r21(X− X0) + r22(Y− Y0) + r23(Z− Z0)

r31(X− X0) + r32(Y− Y0) + r33(Z− Z0)
+ ∆y

(6.14)
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Figure 6.3: Bundle adjustment problem. Bundle adjustment from n images. The optimum 3D
point X is reconstructed from all n images, finding the optimal camera poses and corresponding
2D points that will minimise the objective cost function 6.15. (Best viewed in colour)

6.3 Bundle Adjustment
Bundle adjustment is defined as the problem of jointly estimating optimal 3D structure
and camera pose parameters. It was originally conceived in the field of photogrammetry
during the 1950s’ (Triggs et al. [98]) and has been extensively used by the computer vision
community during recent years. It is a process involving three forms of observations:
camera pose parameters, image points and corresponding 3D points. After performing a
bundle adjustment, image points, 3D points and cameras pose parameters should minimise
some form of a cost function. This boils down to minimising the reprojection error between
the observed image points and the predicted image points. As this is a non-linear problem,
the number of iterations required depends from several factors, such as accuracy of feature
points, initial camera pose parameters, viewing angle, images overlapping, etc. Formally,
the objective cost function is given by:

min
P̂i,X̂j

m∑

i=1

n∑

j=1

xij, x̂ij


2

, x̂ij = P̂iX̂j (6.15)

where xij corresponds to the image point j of image i, x̂ij is the corrected image point
computed by the updated projection camera matrix P̂i, and X̂j is the corrected 3D point.
Depending on the input data, some parameters such as the internal calibration parameters,
might have already been optimised from a previous calibration of the cameras. Thus, these
parameters should be declared as constant during the minimisation process.
As was previously stated, every observed image point xij can be represented by a set of
two collinearity equations. Let’s define a 1-dimensional observation vector l, containing
all image points observed across images m. These image points should be valid tie points
lying in the overlapping region of two or more image. Furthermore, if k represents the
number of unknown parameters to be optimised, let dx be a k × 1 correction vector of
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6.3. Bundle Adjustment

the unknowns. If the number of observations is larger than the number of unknowns
(over-determined non-linear system), an adjustment method is required for estimating the
unknown parameters. The Gauss-Markov linear model is a least-squares (LS) adjustment
method that could be used for this purpose. This solver is based on the assumption that
the observations and unknowns have a functional relation to each other.
Since the collinearity equations are non-linear functions, they should be linearised using
a Taylor series expansion of the function with respect to each of the unknown parameters.
This will result in a linear function of the original collinearity form 6.14, evaluated on some
estimated values of the unknowns. After linearisation, the resulting system of observation
equations can be formulated with the following functional model:

l
{2mn×1}

+ ν
{2mn×1}

= J
{2mn×k}

dx̂
{k×1}

(6.16)

where J is the design or Jacobean matrix, containing the partial first-order derivatives
of the observations with respect to the unknowns, evaluated on the approximated values
of the unknowns, and ν is the vector of residuals. Each component in ν is equal to the
difference between the observation l and the corresponding predicted value from the initial
guess. Concretely, the residuals are as follows:

ν
{2mn×1}

= J
{2mn×k}

dx̂
{k×1}

− l
{2mn×1}

(6.17)

The normal system of equations is given by:

N
{k×k}

dx̂
{k×1}

+ n
{k×1}

= 0
{k×1}

(6.18)

where,

N
{k×k}

= JT

{k×2mn}
W

{2mn×2mn}
J

{2mn×k}

n
{k×1}

= JT

{k×2mn}
W

{2mn×2mn}
l

{2mn×1}

(6.19)

The matrix N is known as the normal matrix and W is a diagonal matrix containing the
weights of the observations l. If no weights exist, this weighted matrix is set to unity.
Due to the non-linearity of the problem, an iteration process is required. This iteration
process continues until a termination criterion is met. The most common conditions to be
met is when no more changes in the correction vector appear or when a predefined number
of iterations is reached. Solving Eq. 6.18 for dx̂, the solution vector of the unknowns is
given by:

dx̂
{k×1}

= ( JT

{k×2mn}
W

{2mn×2mn}
J

{2mn×k}
)−1 JT

{k×2mn}
W

{2mn×2mn}
l

{2mn×1}
(6.20)

After convergence, the standard deviation error of the unit weight of the unknowns σ2
0 can

be computed by:

σ2
0 =

νTWν

2m− k (6.21)
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(a) (b) (c)

Figure 6.4: ICP registration example between two point clouds. Performing ICP registration
between two point clouds capturing part of an interior staircase from different viewing angles;
From left to right: (a) source point cloud, (b) target point cloud, (c) registered cloud. (Best viewed
in colour)

The variance-covariance matrix of the unknowns Q is given by:

Q
{k×k}

= σ2
0 ( JT

{k×2mn}
W

{2mn×2mn}
J

{2mn×k}
)−1 (6.22)

which should result into a diagonal matrix where each elementQii represents the variance
of every unknown.
The Gauss-Markov model is a well known mathematically model extensively used in the
field of photogrammetry for solving bundle adjustment problems. However, applications
lying in the computer vision domain, such as Structure from Motion (SfM) or Simultaneous
Localisation and Mapping (SLAM) are expected to provide a real time 3D reconstruction
or mapping of the scene. Thus, more robust objective cost functions or minimisation
techniques are required that can provide a real time solution. Although several approaches
have been proposed (Ni et al. [99], Agarwal et al. [100], Maier et al. [101]), Levenberg-
Marquardt has proven to be the most successful, due to the existence of a damping factor
that forces the objective function towards a fast convergence even for initial solution that are
far away from convergence. Within this work, the classical Gauss-Markov mathematical
model is used, due to the simplicity of the data and small number of sensors.

6.4 Registration of Point Clouds
The process of aligning a set of two point clouds representing the same object from a
different view point is known as registration. The Iterative Closest Point (ICP) algorithm,
introduced by Besl and McKay [102] is one of the most known and used registration
method for performing these form of tasks. The basic principle of the ICP algorithm
works is that one point cloud acts as the reference cloud (also known as target), while the
other one, known as source, is transformed to best match the reference. This involves an
iteration process where the source cloud undergoes a rigid transformation (that implies
translation and rotation) for minimising the distance to the reference point cloud. Figure
6.4 shows a registration example between two point clouds capturing part of an interior
staircase from different viewing angles. The complete staircase cloud is given in Fig.
6.4(c). A step by step explanation of the ICP process is provided by Algo. 6.
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Algorithm 6 Iterative Closest Point (ICP) algorithm

Require: P (source) dataset; M (target) dataset; convergence threshold T
Ensure: Transformation (R′, t′), error ε

1: R′ ← I, t′ ← 0, ε←∞
2: while (ε > T ) do
3: Y ← {m ∈M | p ∈ P : m = ClosestPoint(p)}

4: (R, t, ε)← min
R,t

np∑
k=1

|yk − (Rpk + t)|2

5: P← R ·P+ t
6: R′ ← R ·R′

7: t′ ← R · t′ + t

8: end while
9: return R′, t′

6.5 Sensors Pose estimation and Bundle Adjustment
Finding the rotation and translation parameters of the sensors with respect to a world
coordinate system requires a set of 2D↔3D point correspondences of a reference object
in the scene. This was achieved by placing a regular chessboard in the center of the scene
and setting its upper left corner as the origin of the reference system (see Fig. 6.5). Thus,
every sensor could be oriented with respect to that corner.
Using a regular chessboard as a reference object for initialising a world coordinate system
has the following advantages: portability and explicitness. For the latter, GCPs can be
explicitly defined without using any measuring devices (error free GCPs) but only the
dimensions and pattern size of the chessboard. This form of GCPs are known to be
degenerated due to the lack of depth information, which is important for most camera
pose estimators. For example, the Direct Linear Transformation (DLT) algorithm (Hartley
and Zisserman [94]) is a well-known algorithm for finding the camera pose parameters.
However, the main drawback of DLT is that it is not able to compute the pose parameters of
a sensor from coplanar1 reference object points. Thus, these cases require the use of more
sophisticated algorithms as proposed by Fischler and Bolles [103]. Among the family of
algorithms developed for this purpose, more attention is been given to a class of algorithms
known as the "Perspective–n–Point", originally introduced by Fischler and Bolles [103]
with many applications in Computer Vision and Robotics. This Perspective–n–Point
problem" has received a great deal of attention in both the Photogrammetry (McGlove et
al. [104]) and Computer Vision (Hartley and Zisserman [94]) communities. The aim of
the PnP problem is to determine the EO of a sensor, given the IO parameters of the sensor
and a set of n 2D↔3D correspondences between 3D points defined on a reference object
and their 2D mapping.
Solutions to the PnP problem can be categorised into linear and non-linear. Within this

1Coplanar points are three or more points that lie in the same plane.
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6. Towards a Multi Camera 3D Object Recognition System

Figure 6.5: World coordinate system defined on a regular chessboard pattern. A large chessboard
is placed at the center of the scene, with its upper left corner defined as the origin of the world
coordinate system. (Best viewed in colour)

context, taking into consideration the planarity of the 3D coordinate system, two non-
linear approaches were considered: PnP with Levenberg-Marquardt optimisation and the
EPnP (Lepetit et al. [105]). The PnP-LM algorithm tries to find the EO parameters of
the sensor by minimising the reprojection error expressed by Eq. 6.15. Likewise, the
EPnP algorithm can provide a unique solution for both planar and non-planar cases iif the
number of 2D↔ 3D correspondences is ≥ 4. The main idea of EPnP is to express the n
number of 3D points as a weighted sum of four virtual control points.
The (X,Y) coordinates of the GCPs were generated by multiplying the current index
of the rows and columns with the corresponding horizontal and vertical pattern size.
Having the XY plane coinciding with the surface of the chessboard, the Z coordinates
were set to zero, converting the full GCPs into horizontal GCPs. Figure 6.6 shows the
optimised 2D projections of the corresponding GCPs after applying the EPnP algorithm
(PnP-LM produces similar visual results). At first, the image points of all internal corners
on the chessboard were found and refined by a subpixel gradient-based corner optimiser
implemented in OpenCV [106]. Setting the IO parameters of the Kinect sensors to be fixed
during the minimisation process, both the PnP-LM and EPnP algorithms were applied for
finding the best EO parameters for all sensors. The corresponding translation and rotation
values are provided in Tab. 6.1. Results showed that even though the difference between
the EO parameters deduced from both methods are approximately in the same range, the
main difference occurs in the RMS error. The PnP-LM algorithm is within the range of a
quarter of a pixel whereas the EPnP algorithm is in the range of half a pixel. Therefore,
one can perceive the sensitivity and importance of the initial chessboard 2D corner points
in the minimisation process for achieving a low RMS error.
In the next step of the evaluation pipeline, a bundle adjustment was carried out for
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(a) (b)

(c) (d)

Figure 6.6: Mapped chessboard points of the corresponding ground control points. (Best viewed
in colour)

optimising the EO of all four Kinect sensors, holding the IO parameters fixed and providing
as initial values for the EO parameters the EO results from the previous step (see 6.1). The
advantage of running a bundle process is that all observations and unknowns are linear
dependent from each other as expressed in the Jacobean matrix J (see Sect. 6.3). Thus,
the amount of correction in the correction vector dx̂ is subject to this dependency. The
minimisation condition 6.15 was set to 0.01 px and the maximum number of iterations to
20. The bundle converged after 8 and 14 iterations for the PnP-LM and EPnP algorithm
respectively, resulting a standard deviation of the unit weight of σPnP−LM

0 = 0.211 px and
σEPnP
0 = 0.342 px respectively. The small number of iterations, along with the very small

standard deviation of the unit weights indicate the robustness of both the PnP algorithms.
Another interpretation of the solution could be that the GCPs have a fixed location and
geometry in 3D space and thus the mapping or projection of these points in the images
could accurately be found using a corner detector.

6.6 Sequential Point Cloud Registration
Results from bundle adjustment were given as an input in the current step of the evaluation
workflow for refining the 3D geometry of the scene. This task was achieved by performing
a sequential registration of all point clouds of the same time stamp into a single cloud
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Sen.
Tx

[m]
Ty

[m]
Tz

[m]
Rx

[deg]
Ry

[deg]
Rz

[deg]
RMS
[px]

Pn
P-

LM

A 2.748 −0.135 2.175 119.232 1.368 −76.261 0.240
B 2.690 0.768 2.128 124.905 −1.972 −91.559 0.247
C −1.576 1.139 2.146 120.264 1.428 98.205 0.255
D −1.575 −0.122 2.165 119.634 −0.818 85.313 0.231

EP
nP

A 2.722 −0.161 2.345 121.639 1.828 −75.974 0.463
B 2.649 0.729 2.259 127.082 −0.881 −91.444 0.432
C −1.565 1.148 2.246 121.639 1.250 98.377 0.389
D −1.547 −0.077 2.238 120.951 0.199 85.428 0.372

Table 6.1: Exterior orientation parameters of all Kinect sensors. Exterior orientation parameters
and corresponding RMS error of all Kinect sensors defined within the chessboard coordinate
system.

representing the complete scene. Moreover, it should be stressed that optimising the
exterior orientation of the sensors is independent from the ICP process. Thus, bundle
adjustment was applied for optimising the EO parameters of all Kinect sensors, whereas
ICP was used to minimise the geometric error between pairs of point clouds. The relative
rigid transformation derived from the EO parameters of the sensors was used as an initial
guess matrix for the registration process. After refinement, the resulting matrix remained
fixed during the complete sequence, preserving the relative transformation of the initial
state of the scene.
Starting from sensor A (see Fig. 6.6), registration was performed following a counter-
clockwise orientation. Given a pair of sensors, for example A and B, let RB,A be the 3× 3
rotation matrix expressing the relative rotation between the sensors and TB,A the relative
translation offset. The initial guess matrix [RBA | TBA] was computed by the following
relations:

RB,A = RAR
T
B

TB,A = −RAR
T
BTB +TA

(6.23)

Proof of the relations can be found in Appx. E.
The complete evaluation workflow, involving the orientation of the sensors (Sect. 6.5) and
the sequential registration process proposed in the current section is outlined in Algo. 7.
For the convergence of the ICP algorithm, two termination criteria were set: Maximum
number of iterations imposed by the user (30) and the difference between the previous
transformation and the current estimated transformation to be smaller than a predefined
value (10−3). Figure 6.7 shows the minimisation of the fitness score for every pair of
clouds in relation to its number of iterations. It is apparent from the figure that the initial
fitness scores for pairs (A,B) and (C,D) are much lower than the (CD,AB) pair. The
reason for this is because the overlapping region between the first two pairs is much larger
than the last pair, which is critical for performing a good registration. Furthermore, as
the number of iterations increases, the amount of correction is significantly reduced. For
pairs (A,B) and (C,D) the fitness scores are improved but with slower rates compare to the
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6.6. Sequential Point Cloud Registration

Algorithm 7 Proposed approach for sequentially aligning a set of four point clouds.
Require: A set of GCPs denoted as XGCP and their corresponding set of 2D projected

points {xA, . . . ,xD} acquired from four Kinect sensors (A, . . . ,D).

1: Compute the EO parameters for every Kinect sensor with respect to the chessboard
world coordinate system using the PnP-LM or EPnP algorithms. Spatial resection is
performed given a set of 2D↔3D correspondences, in this case defined by:

{{xA ↔ XGCP}, . . . , {xD ↔ XGCP}}

The output from the aforementioned pose algorithms is a set of rotation matrices and
translation vectors provided in the following way:

{[
RA | TA

]
, . . . ,

[
RD | TD

]}

2: Carry out a bundle adjustment using the EO values from Step 1 as initial values for
the unknowns (IO parameters are considered fixed).

3: Compute the relative rigid transformation matrices between pairs of point clouds given
the following order:

RA,B = RAR
T
B TA,B = −RAR

T
BTB +TA

RC,D = RCR
T
D TC,D = −RCR

T
DTD +TC

RCD,AB = RCDR
T
AB TCD,AB = −RCDR

T
ABTAB +TCD

4: Use the relative transformations from step 3 as initial guess matrices for performing
the registration task through the ICP algorithm.

return Optimised relative transformation matrix for every pair of point clouds.

(CD,AB) pair, which rapidly converges after a few iterations. This is due to the minimum
overlapping area between these clouds caused by the diametrically opposed configuration
of the corresponding sensors. Furthermore, results showed that the ICP algorithm is able
to register two clouds with significant overlapping without getting effected by the error of
depth measurement.
Figure 6.12 illustrates the best case of the problem, where the noisy part for the registration
is restricted towards the end of the scene. A severe case of the problem is depicted in Fig.
6.13. On can observe that the error introduced by the increasing distance to the sensor
does not share similar geometries between the two point clouds, causing the registration
algorithm to fail. Therefore, this leads to the conclusion that for diametrically opposed
point clouds the registration should not be based on similar global structures in the scene
but rather on local structures such as normals and curvature.
To this end, the normal-based ICP approach of Holz et al. [107] was used for registering
a a pair of point clouds by comparing their normals. Results showed that even though the
registration process didn’t converge, there were small but stable movements compare to the
normal ICP algorithm, which means that surface normals are more stable for comparing
local appearances with respect to global scene structures. Nevertheless, due to the sensor
dependent random depth measurement error, the surface normals of the ground plane may
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6. Towards a Multi Camera 3D Object Recognition System

Figure 6.7: Fitness scores for all pairs of point clouds. It is clear that the initial fitness scores for
pairs (A,B) and (C,D) are much lower than the (CD,AB) pair. The reason for this is because the
overlapping region between the first two pairs is much larger than the last pair, which is critical for
performing a good registration. Furthermore, as the number of iterations increases, the amount
of correction is significantly reduced. For pairs (A,B) and (C,D) the fitness scores are improved
but with slower rates compare to the (CD,AB) pair, which rapidly converges after a few iterations
(≈ 3). (Best viewed in colour)

vary from sensor to sensor, which also affects the registration process.

6.7 Conclusions
In this chapter, a three-step evaluation workflow was presented for assessing the reliability
of registering point clouds generated from multiple Kinect sensors. In the first part of the
workflow, all point clouds were transformed to a world coordinate system defined by a
regular chessboard object. The EO orientation of the sensors was found using the PnP-LM
and EPnP algorithms. Both approaches provided very accurate EO parameters in the range
of half and a quarter of a pixel respectively.
In the second step, the results from the PnP algorithms were used as initial values to a
bundle adjustment system for optimising the EO of the sensors. Convergence in this step
was achieved after a very few iterations, proving the robustness of the pose estimators.
Thus, it should be stressed that if a chessboard patter is used as a world coordinate reference
system, the bundle adjustment step could be omitted iif the sensors are oriented using one
of the tested PnP algorithms. The reason for this is because the amount of correction in the
EO parameters is in the range of millimetres and therefore does not provide a significant
improvement of the overall accuracy of the system.
In the last step of the proposed workflow, all point clouds of the same time stamp were
sequentially registered in a counter-clockwise manner using the ICP algorithm. The
relative orientation for a pair of point clouds was replaced by the relative orientation
between the corresponding sensors. Results showed that for point clouds looking in the
same direction in the scene and have a large amount of overlapping, the registration is
accurately performed where is for diametrically opposed point clouds the registration
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6.7. Conclusions

(a) (b)

Figure 6.8: Registration of a pair of point clouds capturing a person sitting on a chair. Before
registration (a) and after registration (b). (Best viewed in colour)

would fail. Therefore, this form of configuration should provide additional hints to the
ICP algorithm, in the form of comparing similar local features between the two scenes.
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6. Towards a Multi Camera 3D Object Recognition System

A B C D

A - B C - D

A - B - C - D

Figure 6.9: Sequential registration of point clouds. The registration procedure follows the pipeline
introduced by Algo.7. (Best viewed in colour)

66



6.7. Conclusions

(a) (b)

Figure 6.10: Registration of a pair of point clouds capturing people standing and sitting. Before
registration (a) and after registration (b). (Best viewed in colour)

(a) (b)

(c) (d)

Figure 6.11: Registration of a pair of point clouds capturing people fighting. Left column: Before
registration; Right column: After registration. (Best viewed in colour)
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6. Towards a Multi Camera 3D Object Recognition System

Figure 6.12: Registration problem (Best case).(Best viewed in colour)

(a)

(b)

Figure 6.13: Registration problem (Difficult case). Difficult case of registration (perspective view
(a) and top view (b)). (Best viewed in colour)
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Chapter 7

Conclusions and Future Work

7.1 Conclusions
The human brain performs object recognition effortlessly and instantaneously based on
visually collected data. It is a result of a life learning process, where visual information
is constantly updated in the inferior temporal cortex of the brain. This enables the rapid
recognition of objects despite their substantial appearance variations. Hence, the task of
object recognition is not just the identification of an object at a particular moment in time
but also tracing the way it evolves in time. The human eyes work stereoscopically, which
means that the data processed by the visual human system is a real time reconstruction of
the scene. Therefore, the purpose of the current dissertation was to develop algorithms
that can recognise objects in three-dimensional space and capture their temporal shape
variations by processing data similar to the ones obtained by the human visual system.
Such data were acquired by a Kinect sensor, a structure light technology that provides real
time RGB and depth information of the scene.
The results of my work can be concluded as follows: For the first part, the accuracy of
the segmentation depends strongly on the accuracy of the detection box. After evaluating
the performance of both detectors, the precision and recall for Dalal and Triggs algorithm
was higher than Dubout’s algorithm. However, Dubout’s approach had a higher IOU
accuracy compare to Dalal and Triggs, which means that DPM approaches provide a better
localisation and approximate size determination of a person in a scene. Furthermore, in the
segmentation part results showed that using different edge potentials does not significantly
affect the segmentation accuracy. This means that the unary potentials have a larger
influence for the graph cut algorithm compare to the edge potentials. Comparing the
segmentation approach to the CRF-CNN approach (Zheng et al. [92]) showed improved
results mostly for extreme poses. It is believed that using a larger amount of training data
with a larger variety of poses could improve the weights of the classifier and thus achieve
better segmentation results.
Articulated objects experience time-dependent shape variations, which are also recognised
by the human visual perception system. In the second part of the dissertation, a system was
proposed for capturing and tracking these variations in three-dimensional space by using
the information deduced by the minimum volume enclosing ellipsoid (MVEE) algorithm
introduced by Moshtagh [13]. Results have shown that the reliability of the ellipsoid
information depends mainly on the quality of the extracted foreground mask of the person.
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In the last part, an workflow was established for evaluating the accuracy of merging
point cloud data from multiple Kinect sensors. In the first part the results showed that
the PnP-LM and EPnP approaches are well suited for initially orienting all sensors with
respect to a global coordinate system. This was proven in the second part of the workflow,
where a bundle adjustment was performed for optimising the exterior orientation of the
sensors using as initial values the results provided in the previous step. Convergence was
reached after a few iterations, proving the robustness of the PnP approaches. However, the
accuracy of the orientation of the sensors is independent from the quality of the generated
point clouds and thus, a geometric correction was performed using the Iterative Closest
Point (ICP) algorithm. For sensors that capture approximately the same area in the scene,
registration would converge after few iterations whereas for diametrical opposed views
the registration process would make very small corrections due to the limited overlapping
information. Applying the surface-normal ICP approach didn’t improve the registration
result, which means that the orientation of the surface normals is strongly affected by the
quality of the point cloud. I believe that the results presented in Chap. 6 could be useful
for future object recognition approaches, where accurate combination of 3D dataset will
be required.

7.2 Future Work
The work presented in the current dissertation could be extended as follows:

In Chap. 4, a Conditional Random Field pairwise energy function was presented, for
the task of segmenting human instances in RGBD space. One direction of future work
could be to replace graph cuts (Boykov and Kolmogorov [68]) with dynamic graph cuts
(Kohli et al. [108]) for reducing the computation time of the cut. Although graph cuts are
well known for their low polynomial time complexity, dynamic graph cuts require time
which is proportional to the total amount of change in the edge weights between two graph
instances. Considering only sub-modular energy functions, MAP inference can be found
in less time, significantly improving the performance of the complete recognition task.
Another direction of future work could be to extend the proposed energy function 4.3 by
incorporating a higher order potential termψc(xc), which adds an additional constraint that
all pixels constituting a segment should be part of the same object. Spatial consistency for
pixels corresponding to an object can be encouraged by giving a high score to pixels taking
a different label than the correct one. Absence of partial inconsistency will lead to a hard
penalisation assuming that all or none of the pixels should take the correct label. To prevent
this, one could use the Robust P n Potts model (see Kohli et al. [109]), which gives a cost
that is modelled by a linear truncated function and depends on the number of inconsistent
pixels. Partial inconsistency also depends on the number of pixels disagreeing with the
dominant label. This requires an a-priori knowledge of the object’s shape. Ladický et al.
[14] employed a local colour model using the pixel information within the detection box to
distinguish between foreground-background pixels. While colour is not a discriminative
feature, foreground/background pixels sharing similar colours could lead to undependable
results. This could significantly be improved by utilising the depth information from the
Kinect sensor and clustering voxels with similar depth. A simple 3D connected-component
could be used for this purpose.
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Higher order potentials can efficiently be solved using move making algorithms such as
the α-expansion and αβ swapping. While these methods have shown impressive results
for multi-label image classification tasks (see Kohli et al. [109], [61]), their computation
performance depends highly on the size of the label set. For a binary label set, a higher
order submodular energy function could efficiently be solved using swapping or expansion
move algorithm in lower computation time.
Apart from the segmentation task, the quality of the detection box could be improved
by learning human representations jointly from RGB and depth information such as the
Combo-HOD (Spinello et al. [110]) or the depth-based sub-clustering approach for
detecting people in groups introduced by Munaro et al. [111].
A third line of research which arises from Chap. 5 is to develop an approach that can
"learn" the relation between the parameters of the ellipsoid i.e. the variations in the angles
or the size of the ellipsoid indication of a predefined motion. Furthermore, the quality
of the ellipsoid is highly depended on the accuracy of the foreground. Thus, although
the proposed pipeline in Algo. 2 removes all noisy blobs resulted from Kammerl’s [12]
foreground estimation approach, one could seek improving the existing method in terms
of computational performance.
Finally, the most direct extension of the proposed work in Chap. 6 should focus on
developing approaches that can solve the error introduced by the Kinect sensor as a function
of the distance between the sensor itself and the object/-s placed in the center of scene.
This could be improved or eliminated by learning a depth multiplier image (Teichman et al.
[112]). Furthermore, the registration accuracy between the point clouds could be further
evaluated by combining different geometrical information such as comparison between
similar normals, or feature points.
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Appendix A

Submodular Energy Functions

Submodular energy functions have been extensively used in the computer vision field,
especially for image segmentation tasks (Kohli et al. [61], [109], [108]) as they can be
minimised in polynomial time (Kolmogorov and Zabih [67]). The definition presented
here follows the notation introduced in Chap. 3, Sects. 3.2 and 3.3 respectively.
If every random variable (Xi)i∈V is assigned a value xi from its configuration space
Xi (xi ∈ Xi), a pairwise MRF energy function is said to be submodular, if its pairwise
term ϕ(xi, xj),∀ (i, j) ∈ E satisfies:

∀x1i , x2i ∈ Xi, s.t. x1i ≤ x2i
∀x1j , x2j ∈ Xj, s.t. x1j ≤ x2j

(A.1)

Based on A.1, the following condition should hold:

ϕij(x
1
i , x

1
j) + ϕij(x

2
i , x

2
j) ≤ ϕij(x

1
i , x

2
j) + ϕij(x

2
i , x

1
j) (A.2)

In case of binary energy functions, where Xi ∈ {0, 1},∀i ∈ V , condition A.2 is given by:

ϕij(0, 0) + ϕij(1, 1) ≤ ϕij(0, 1) + ϕij(1, 0) (A.3)

Potential functions with one binary variable are always submodular.
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Appendix B

Environment Setup

The proposed algorithms in the dissertation were tested and evaluated in a simulated indoor
environment (see Fig. B.1) that emulates the internal part of a train wagon. In order to
record the complete FOV of the scene, four Kinect sensors were mounted on an aluminium
construction as depicted in the images below. Every Kinect sensor was assigned a unique
ID, which was used throughout the dissertation. Depending on the lighting conditions
and texturing of the scene, point clouds of varying qualities were generated. Within this
context, the word quality refers to the density of the point cloud, which depends highly on
the texturing, lighting and structure of the scene.

(a) (b)

Figure B.1: Multi sensor environment setup. Sensors setup emulating the internal part of a train
wagon. Every Kinect sensor was assigned a unique ID for consistency. From left to right: The
environment shown in Fig. B.1(a) was dynamically reconfigured, allowing different texturing and
lighting conditions in the scene (Fig. B.1(b)). This was important for testing and evaluating the
proposed algorithms on point clouds generated from different conditions in the scene.

The aluminium construction covers an area of≈ 4.5 m× 2.2 m× 2.3 m depth, width and
height respectively. Different scenarios were recorded in parallel from all sensors with an
acquisition rate of ≈ 19 FPS. One of the main drawbacks of using multiple speckle-based
structured light sensors, is the drastic reduction in the quality of the depth images due to
the interference of the near-infrared light of different sensors. To eliminate this effect,
all sensors where oriented towards the lower part of the scene, restricting the amount of
interference on the ground area of the FOV. Synchronisation was performed in a multi-
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B. Environment Setup

threaded fashion (using the Boost library [89]), overcoming the problem caused by the
hardware latency of the USB bus.
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Appendix C

Kinect calibration

There is a variety of calibration tools that have been developed within several open source
projects, such as ROS [113], MPRT [114] and OpenCV [106]. While working on 3D
applications, the quality of the generated point cloud depends highly on the quality of the
calibration parameters (also known as intrinsic or interior parameters (see Sect. 6.2.1)).
Within the dissertation, a pinhole camera model is employed. The image distortion is
assumed to be expressed by the Brown model [97], which contains a set of 10 parameters
1. The manufacturer of Kinect provides a set of default calibration values that are well
suited for large scale applications but not accurate enough for modelling local 3D geometry.
One main advantage of the Kinect sensor is that it uses low distortion lenses, producing
faintly apparent displacement errors around the corners of the image. This is also depicted
by the radial distortion curves in Fig. C.2. Inadequate calibration generates a systematic
error in the 3D coordinates of individual points. Also, misalignment between the IR and
RGB coordinate systems may lead to a inaccurate assignment of the RGB values to the 3D
points. As a consequence, these sources of errors may or may not be taken into account,
depending on the application and its requirements.
In recent years, several studies have presented a list of factors influencing the geometric
accuracy and quality of the depth data. To the best of my knowledge, Khoshelham [115]
was the first to perform a theoretical error analysis on the depth data and the impact of
the error in indoor mapping applications (Khoshelham et al. [116]). His results showed
that the error of depth measurement increases quadratically with the increasing distance
to the sensor, ranging from a few millimetres up to≈ 4 cm at the maximum distance of the
sensor (≈ 5 m). Although this is a sensor-dependent random error it was not considered in
this work, due to the fact that achieving maximum accuracy of the generated point cloud
is not a prerequisite for performing object recognition tasks.
To determine the interior parameters of the IR and RGB cameras, a standard calibration
approach was employed. A chessboard pattern of 5 cm grid size and dimensions of 5×7
rows and columns respectively was used as a reference pattern for both camera systems.
The inner corners of the grid served as GCPs and the corresponding image points were
computed using a sub-pixel accuracy corner detector implemented in the OpenCV [106]
library. Since the IR and RGB cameras are not able to acquire data simultaneously due to
hardware restrictions, acquisition was performed by enabling/disabling the camera shatters
every 500 ms. Due to the observation of the emitted speckles by the IR camera, the quality

1The Brown model consists of the following parameters: c, x0, y0, k1, k2, k3, p1, p2, b0, b1.
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C. Kinect calibration

(a) (b)

Figure C.1: Example of a chessboard pattern acquired during the calibration process from both
the IR and RGB cameras of a Kinect sensor. Fig. C.1(a) shows the chessboard points detected
from the IR camera and Fig. C.1(b) from the RGB camera respectively (The RGB image is shown
in grey scale because the chessboard corner detector in OpenCV [106] only works on grey scale
images. (Best viewed in colour)

of the chessboard corners was highly noisy. Thus, to avoid any disturbances caused by
the encoded speckles in the IR camera, the infrared emitter was covered with opaque
tape. The light from the emitter was replaced by an external halogen lamp (also known
as tungsten halogen) for improving the visibility of the chessboard corners and helping to
acquire approximately the same chessboard images from the IR and RGB cameras. This
step was essential for finding the relative transformation between the camera poses. The
parameters for every sensor are provided in Tab. C.4.
A total of 100 chessboard images in different poses were recorded from each sensor for
performing the calibration task. Every pool was split in 10 different random sets of 24
images using a random selection algorithm. Each set was calibrated separately using the
calibration algorithm proposed by Zhang2 [118]. Tables C.2 and C.3 provide the interior
parameters values for every Kinect sensor.
The RMS error for the IR and RGB cameras is given in Tab. C.1. It is well known from
literature (Khoshelham [115], Zhang et al. [119], Herrera et al. [120]) that the IR camera
uses lower distortion lenses compare to the RGB camera, leading to a smaller RMS error
as it is evident from the results in Tab. C.1.

Approach Sensor ID
A B C D

Infrared 0.171 0.217 0.208 0.216
RGB 0.228 0.241 0.216 0.336

Table C.1: Average reprojection error (in pixels)

2An alternative approach could be the one of Herrera et. al [117]. The method is not based on depth
discontinuities but uses a set of planar images recorded from various poses
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(a) (b)

Figure C.2: Radial distortion curves for the IR and RGB cameras of the Kinect sensors. The IR
curves follow of a barrel-like distortion curve, while the RGB radial distortion curves follow also
a more moustache type representation. (Best viewed in colour)

Sensor ID cx cy x0 y0

In
fra

re
d A 569.833 569.117 335.038 259.227

B 569.220 569.198 323.839 260.600
C 586.786 585.971 327.520 240.808
D 591.379 591.084 330.742 241.404

RG
B

A 511.908 510.640 330.890 259.780
B 497.488 497.568 326.354 267.325
C 516.212 516.059 324.874 246.470
D 521.307 520.709 323.213 242.130

Table C.2: IR and RGB intrinsic camera parameters (in pixel unit)

Sensor ID k1 k2 p1 p2 k3

In
fra

re
d A −0.1648 0.7673 0.0069 0.0064 −1.3135

B −0.1480 0.6950 0.0079 0.0017 −1.2501
C −0.0992 0.2648 0.0022 −0.0036 −0.2833
D −0.1933 1.1570 0.0002 0.0039 −2.4079

RG
B

A 0.0288 −0.1249 0.0070 0.0056 −0.0506
B 0.0093 −0.1718 0.0124 0.0048 0.1517
C 0.0803 −0.4595 0.0072 −0.0008 0.5304
D 0.0187 0.0259 −0.0009 0.0030 −0.2990

Table C.3: IR and RGB lens distortion parameters.

Moreover, the mean square error for all sensors was 1/4 of a pixel, which is acceptable if
one would consider the low distortion of the lenses. Figure C.2 shows the radial symmetric
curves of the IR and RGB cameras expressed by the principal point. Specifically, for the
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C. Kinect calibration

ID [m]
Tx

[m]
Ty

[m]
Tz

[deg]
Rx

[deg]
Ry

[deg]
Rz

A −2.160 0.010 0.780 0.937 0.280 −0.386
B −2.680 0.410 −0.630 0.842 0.049 0.100
C −1.840 −0.730 −0.090 0.536 −2.676 −0.282
D −2.010 0.110 −0.190 −0.118 0.483 0.294

Table C.4: Translation and rotation parameters between the IR and RGB cameras coordinate
systems. These parameters define the relative rigid transformation between the two camera poses.

IR cameras, it is clear that all sensors have the form of a barrel distortion curve, achieving
a maximum displacement error of 0.14 pixels in the extreme regions of the image. For the
RGB cameras, the radial distortion error is considered negligible, even though the form
of the curve does not strictly follow a barrel distortion form but rather a moustache type
representation.
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Appendix D

XML Structure of the Ellipsoid

According to Sect. 5.2.5, an ellipsoid can be mathematically represented by its variance-
covariance matrix. After applying principal component analysis (PCA) on the matrix, the
extracted information is stored in an XML file for performing post-processing tasks. The
structure and description of the elements of the XML file are given in Fig. D.1 and Tab.
D.1 respectively. If no ellipsoid is found in the current scene, the corresponding XML
elements are set to zero.
The XML file was given as an input to a tracking software for visualising the variations of
the ellipsoid in time. The results from the software was provided to psychologists in the
anthropology and disaster management field for classifying the behaviour of the people
according to their shape deformations.

Element Name Description
SemiMajorAxis The length of the semi-major axis a, b and c of the ellipsoid
Center Position of the center of the ellipsoid
UpperPoint Upper vertex position
LowerPoint Lower vertex position
FrontPoint Front vertex position
Volume Volume of the ellipsoid expressed in m3

Rotations
Angles defined between every semi-major axis and their
corresponding predefined reference axis of the fictitious
coordinate system.

HumanInfo Approximated values for the height, width and depth of a person

Table D.1: A description of the XML elements containing the ellipsoid information.

81



D. XML Structure of the Ellipsoid

<?xml version="1.0" encoding="UTF-8"?>
<Person ID="">
<EllipsoidInfo >
<SemiMajorAxis >
<a></a>
<b></b>
<c></c>

</SemiMajorAxis>
<Center>
<X></X>
<Y></Y>
<Z></Z>

</Center>
<UpperPoint >
<X></X>
<Y></Y>
<Z></Z>

</UpperPoint>
<LowerPoint >
<X></X>
<Y></Y>
<Z></Z>

</LowerPoint>
<FrontPoint >
<X></X>
<Y></Y>
<Z></Z>

</FrontPoint>
<Volume></Volume>
<Rotations >
<Omega></Omega>
<Phi></Phi>
<Kappa></Kappa>

</Rotations>
</EllipsoidInfo>
<HumanInfo >
<Height></Height>
<Width></Width>
<Depth></Depth>

</HumanInfo>
</Person>

Figure D.1: XML structure containing the ellipsoid data. The XML tree starts at a parent node
(also known as root element) corresponding to the person’s ID and branches into several child
elements representing the attributes of the ellipsoid. The numerical values of the ellipsoid were
registered within the sub-elements of the corresponding child elements.
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Appendix E

Relative 3D Transformation

The Iterative Closest Point (ICP) algorithm is one the most known approaches for the
geometric alignment of a pair of point clouds. However, this alignment procedure requires
an initial estimate of the relative pose between the point clouds, expressed by a rigid
transformation (rotation + translation) matrix. The purpose of this chapter is to derive the
mathematical relation that expresses the relative orientation between the source (s) and
target t dataset, utilising the information from the sensor poses.
Specifically, let [Rrel | Trel] correspond to the relative transformation matrix representing
the relative rotation Rrel and relative translation Trel of the source to the target point
cloud. Given the exterior orientation of the Kinect sensors, computed by the Perspective-
n-Point algorithms (see Sect. 6.5), one can approximate [Rrel | Trel], by finding the
relative transformation matrix between the exterior orientations of the sensors. Even
though the accuracy of the sensors poses differs from the accuracy of the point clouds,
the relative transformation between the two sensor systems could be considered as a good
approximation for the true initial guess.
Setting the upper left corner of a chessboard as the origin of a world coordinate system
(see Fig. 6.5), let [Rs | Ts] and [Rt | Tt] represent the relative transformation matrices of
the left Kinect sensor (t cloud) and the right sensor (s cloud) with respect to that system.
Every spatial point XW corresponding to a horizontal GCP on the chessboard surface can
be transformed to both coordinate systems from the following relations:

Xt = RtXW +Tt (E.1a)
Xs = RsXW +Ts (E.1b)

Solving E.1b for XW, it becomes:

XW = RT
s Xs −RT

s Ts (E.2)

Inserting E.2 in E.1a:

Xt = Rt(R
T
s Xs −RT

s Ts) +Tt

= RtR
T
s Xs −RtR

T
s Ts +Tt

(E.3)
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where,

Rrel = RtR
T
s (E.4a)

Trel = −RtR
T
s Ts +Tt (E.4b)

84



Bibliography

[1] A. Andreopoulos and J. K. Tsotsos, “50 years of object recognition: Directions
forward.” Computer Vision and Image Understanding, vol. 117, no. 8, pp. 827–891,
2013.

[2] L. G. Roberts, Machine Perception of Three-Dimensional Solids, ser. Outstanding
Dissertations in the Computer Sciences. Garland Publishing, New York, 1963.

[3] D. G. Lowe and T. O. Binford, “Perceptual organization as a basis for visual
recognition.” in Association for the Advancement of Artificial Intelligence (AAAI),
1983, pp. 255–260.

[4] I. Biederman, “Recognition-by-components: A theory of human image understand-
ing,” Psychological Review, vol. 94, pp. 115–147, 1987.

[5] C. Hough and V. Paul, “Method and means for recognizing complex patterns,”
December 1962, uS Patent 3,069,654.

[6] R. O. Duda and P. E. Hart, “Use of the hough transformation to detect lines and
curves in pictures,” Communications of the ACM, vol. 15, no. 1, pp. 11–15, January
1972.

[7] A. Desolneux, L. Moisan, and J.-M. Morel, From Gestalt Theory to Image Analysis:
A Probabilistic Approach, 1st ed. Springer Publishing Company, Incorporated,
2007.

[8] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, ser. CVPR ’05. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 886–893.

[9] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object
detection with discriminatively trained part-based models,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (TRAMI), vol. 32, no. 9, pp. 1627–1645,
2010.

[10] C. Dubout and F. Fleuret, “Deformable part models with individual part scaling,”
in Proceedings of the British Machine Vision Conference (BMVC), 2013, Poster,
pp. 28.1–28.10.

[11] R. E. Kalman, “A new approach to linear filtering and prediction problems,” ASME
Journal of Basic Engineering, 1960.

85



Bibliography

[12] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and E. Steinbach, “Real-
time compression of point cloud streams,” in IEEE International Conference on
Robotics and Automation (ICRA), 2012, Conference Proceedings, pp. 778–785.

[13] N. Moshtagh, “Minimum volume enclosing ellipsoid,” University of Pennsylvania,
Tech. Rep., 2005.

[14] L. Ladický, P. Sturgess, K. Alahari, C. Russell, and P. H. S. Torr, “What, where
and how many? combining object detectors and crfs.” in European Conference
on Computer Vision (ECCV), ser. Lecture Notes in Computer Science, vol. 6314.
Springer, 2010, pp. 424–437.

[15] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in Proceedings
of the 18th International Conference on Machine Learning, ser. ICML ’01. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 282–289.

[16] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization
via graph cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), vol. 23, no. 11, pp. 1222–1239, November 2001.

[17] L. L. Vibhav Vineet, Jonathan Warrell and P. Torr, “Human instance segmentation
from video using detector-based conditional random fields,” in Proceedings of the
British Machine Vision Conference. BMVA Press, 2011, pp. 80.1–80.11.

[18] G. Shu, A. Dehghan, and M. Shah, “Improving an object detector and extract-
ing regions using superpixels,” in Proceedings of the 2013 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Washington, DC, USA: IEEE
Computer Society, 2013, pp. 3721–3727.

[19] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual categorization
with bags of keypoints,” in Workshop on Statistical Learning in Computer Vision,
ECCV, 2004, pp. 1–22.

[20] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Simultaneous detection and
segmentation,” in Proceedings of the European Conference on Computer Vision
(ECCV), 2014.

[21] K. Lai, L. Bo, X. Ren, and D. Fox, “Detection-based object labeling in 3d scenes,”
in IEEE International Conference on on Robotics and Automation, 2012.

[22] A. Teichman, J. T. Lussier, and S. Thrun, “Learning to segment and track in rgbd,”
IEEE Transactions on Automation Science and Engineering, pp. 841–852, 2013.

[23] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich features from RGB-
D images for object detection and segmentation,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2014.

[24] L. Chen, H. Wei, and J. Ferryman, “A survey of human motion analysis using depth
imagery,” Pattern Recognition Letters, vol. 34, no. 15, pp. 1995–2006, November
2013.

86



Bibliography

[25] J. Aggarwal and M. Ryoo, “Human activity analysis: A review,” ACM Computing
Surveys, vol. 43, no. 3, pp. 16:1–16:43, April 2011.

[26] W. Li, Z. Zhang, and Z. Liu, “Action recognition based on a bag of 3d points,”
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 9–14, 2010.

[27] O. Oreifej and Z. Liu, “Hon4d: Histogram of oriented 4d normals for activity
recognition from depth sequences,” IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 716–723, 2013.

[28] A. W. Vieira, E. R. Nascimento, G. L. Oliveira, Z. Liu, and M. F. M. Campos,
“STOP: space-time occupancy patterns for 3d action recognition from depth map
sequences,” in Progress in Pattern Recognition, Image Analysis, Computer Vision,
and Applications - 17th Iberoamerican Congress, CIARP 2012, Buenos Aires,
Argentina, 2012, pp. 252–259.

[29] J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu, “Robust 3d action recognition
with random occupancy patterns,” in Proceedings of the 12th European Conference
on Computer Vision (CVPR) - Volume Part II. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 872–885.

[30] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore,
P. Kohli, A. Criminisi, A. Kipman, and A. Blake, “Efficient human pose estimation
from single depth images,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 12, pp. 2821–2840, 2013.

[31] U. Rafi, J. Gall, and B. Leibe, “A semantic occlusion model for human pose
estimation from a single depth image,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), June 2015, pp. 67–74.

[32] K. Buys, C. Cagniart, A. Baksheev, T. De Laet, J. De Schutter, and C. Pantofaru,
“An adaptable system for rgb-d based human body detection and pose estimation,”
The Journal of Visual Communication and Image Representation, vol. 25, no. 1,
pp. 39–52, 2014.

[33] F. Hegger, N. Hochgeschwender, G. Kraetzschmar, and P. Ploeger, People Detection
in 3d Point Clouds Using Local Surface Normals, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, vol. 7500, book section 15, pp. 154–
165.

[34] M. Sigalas, M. Pateraki, I. Oikonomidis, and P. Trahanias, “Robust model-based 3d
torso pose estimation in rgb-d sequences,” in The IEEE International Conference
on Computer Vision (ICCV) Workshops, June 2013.

[35] J. Ziegler, K. Nickel, and R. Stiefelhagen, “Tracking of the articulated upper body
on multi-view stereo image sequences.” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE Computer Society, 2006, pp. 774–781.

87



Bibliography

[36] M. Baum and U. D. Hanebeck, “Extended object tracking with random hypersurface
models,” Computing Research Repository (CoRR), 2013.

[37] Y. Schröder, A. Scholz, K. Berger, K. Ruhl, S. Guthe, and M. Magnor, “Multiple
kinect studies,” Computer Graphics Lab, Technische Universität Darmstadt, Tech.
Rep. 09-15, October 2011.

[38] J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan, “Scanning 3d full human bodies using
kinects,” IEEE Transactions on Visualization and Computer Graphics, vol. 18,
no. 4, pp. 643–650, April 2012.

[39] F. Faion, M. Baum, and U. D. Hanebeck, “Tracking 3d shapes in noisy point
clouds with random hypersurface models,” in 15th International Conference on
Information Fusion, FUSION 2012, Singapore, July 2012, pp. 2230–2235.

[40] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” in
Proceedings of the IEEE, 2004, pp. 401–422.

[41] E. Almazán and G. Jones, “Tracking people across multiple non-overlapping rgb-d
sensors,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2013, pp. 831–837.

[42] D. Michel, C. Panagiotakis, and A. A. Argyros, “Tracking the articulated motion of
the human body with two rgbd cameras,” Machine Vision and Applications, vol. 26,
no. 1, pp. 41–54, January 2015.

[43] J. M. Hammersley and P. E. Clifford, “Markov random fields on finite graphs and
lattices,” Unpublished manuscript, 1971.

[44] C. Wang, N. Komodakis, and N. Paragios, “Markov random field modeling, infer-
ence & learning in computer vision & image understanding: A survey,” Computer
Vision Image Understanding, vol. 117, no. 11, pp. 1610–1627, November 2013.

[45] Z. Kato and T. Pong, “A multi-layer MRF model for video object segmentation,”
in 7th Asian Conference on Computer Vision (ACCV), Hyderabad, India, January
2006, pp. 953–962.

[46] D. Shi and Y. Han, “An algorithm for moving objects segmentation based on mrf,”
in 4th International Congress on Image and Signal Processing (ICISP), vol. 3,
October 2011, pp. 1396–1399.

[47] M. Björkman, N. Bergström, and D. Kragic, “Detecting, segmenting and tracking
unknown objects using multi-label MRF inference,” Computer Vision and Image
Understanding (CVIU), vol. 118, pp. 111–127, 2014.

[48] Z. Yin and R. T. Collins, “Belief propagation in a 3D spatio-temporal MRF for
moving object detection,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE Computer Society, 2007.

[49] C. S. Lea and J. J. Corso, “Efficient hierarchical markov random fields for object
detection on a mobile robot,” Computing Research Repository (CoRR), 2011.

88



Bibliography

[50] A. Ghosh, A. Mondal, and S. Ghosh, “Moving object detection using markov ran-
dom field and distributed differential evolution,” Applied Soft Computing, vol. 15,
pp. 121–136, 2014.

[51] S. M. Choi, J. E. Lee, J. Kim, and M. H. Kim, “Volumetric object reconstruction
using the 3d-mrf model-based segmentation [magnetic resonance imaging],” IEEE
Transactions on Medical Imaging, vol. 16, no. 6, pp. 887–892, December 1997.

[52] P. Li, R. K. Gunnewiek, and P. H. N. de With, “Scene reconstruction using MRF
optimization with image content adaptive energy functions,” in 10th International
Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS), Juan-
les-Pins, France, October 2008, pp. 872–882.

[53] Y. Pan, M. Zhou, Y. Fan, D. Zhang, and X. Zheng, “A weighted color mrf model
for 3d reconstruction from a single image,” in International Conference on Virtual
Reality and Visualization (ICVRV), September 2013, pp. 21–28.

[54] J. Sun, N.-N. Zheng, and H.-Y. Shum, “Stereo matching using belief propagation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 25,
no. 7, pp. 787–800, July 2003.

[55] L. Zhang and S. M. Seitz, “Parameter estimation for mrf stereo,” in IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2,
June 2005, pp. 288–295.

[56] K. Yamaguchi, T. Hazan, D. McAllester, and R. Urtasun, “Continuous markov
random fields for robust stereo estimation,” in Proceedings of the 12th European
Conference on Computer Vision (ECCV), vol. 5. Berlin, Heidelberg: Springer-
Verlag, 2012, pp. 45–58.

[57] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient n-d image segmentation,”
International Journal of Computer Vision (IJCV), vol. 70, no. 2, pp. 109–131,
November 2006.

[58] C. Rother, V. Kolmogorov, and A. Blake, “"grabcut": Interactive foreground ex-
traction using iterated graph cuts,” ACM Transactions on Graphics, vol. 23, no. 3,
pp. 309–314, 2004.

[59] R. B. Potts, “Some generalized order-disorder transformations,” Mathematical Pro-
ceedings of the Cambridge Philosophical Society, vol. 48, pp. 106–109, January
1952.

[60] E. Ising, “Beitrag zur theorie des ferromagnetismus,” Zeitschrift für Physik, vol. 31,
no. 1, pp. 253–258, 1925.

[61] P. Kohli, L. Ladický, and P. H. Torr, “Robust higher order potentials for enforcing
label consistency,” International Journal of Computer Vision (IJCV), vol. 82, no. 3,
pp. 302–324, May 2009.

89



Bibliography

[62] D. Yan and M. Yongzhuang, “Image restoration using graph cuts with adaptive
smoothing,” in International Conference on Information Acquisition (ICIA), July
2007, pp. 152–156.

[63] V. Kolmogorov and R. Zabih, “Multi-camera scene reconstruction via graph cuts,”
in Proceedings of the 7th European Conference on Computer Vision (ECCV).
London, UK: Springer-Verlag, 2002, pp. 82–96.

[64] D. Wang and K. B. Lim, “Obtaining depth map from segment-based stereo matching
using graph cuts,” Journal of Visual Communication and Image Representation,
vol. 22, no. 4, pp. 325–331, 2011.

[65] D. A. Altantawy, M. Obbaya, and S. Kishk, “A fast non-local based stereo match-
ing algorithm using graph cuts,” in 9th International Conference on Computer
Engineering Systems (ICCES), December 2014, pp. 130–135.

[66] D. M. Greig, B. T. Porteous, and A. H. Seheult, “Exact maximum a posteriori
estimation for binary images,” Journal of the Royal Statistical Society. Series B
(Methodological), vol. 51, no. 2, pp. 271–279, 1989.

[67] V. Kolmogorov and R. Zabih, “What energy functions can be minimized via graph
cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
vol. 26, pp. 65–81, 2004.

[68] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), vol. 26, no. 38, pp. 1124–1137, 2004.

[69] C. Russell, P. H. S. Torr, and P. Kohli, “Associative hierarchical crfs for object class
image segmentation,” in International Conference on Computer Vision (ICCV),
2009.

[70] Q. Huang, M. Han, B. Wu, and S. Ioffe, “A hierarchical conditional random field
model for labeling and images of street scenes,” in International Conference on
Computer Vision and Pattern Recognition (ICCVPR), 2011.

[71] P. Kohli, “Minimizing dynamic and higher order energy functions using graph cuts,
oxford brookes university, oxford, united kingtom,” Ph.D. dissertation, Oxford
Brookes University, November 2007.

[72] V. Kolmogorov, “Convergent tree-reweighted message passing for energy minimiza-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
vol. 28, no. 10, pp. 1568–1583, October 2006.

[73] J. Weston, O. Chapelle, A. Elisseeff, B. Schölkopf, and V. Vapnik, “Kernel Depen-
dency Estimation,” in Neural Information Processing System (NIPS). MIT Press,
2002, pp. 873–880.

[74] M. Johnson, “Pcfg models of linguistic tree representations,” Computational Lin-
guistics, vol. 24, pp. 613–632, 1998.

90



Bibliography

[75] V. N. Vapnik, Statistical Learning Theory. Wiley-Interscience, 1998.

[76] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support vector machine
learning for interdependent and structured output spaces,” in Proceedings of the
21st International Conference on Machine Learning (ICML). New York, NY,
USA: ACM, 2004, pp. 104–112.

[77] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin methods
for structured and interdependent output variables,” Journal of Machine Learning
Research (JMLR), vol. 6, pp. 1453–1484, 2005.

[78] B. Taskar, C. Guestrin, and D. Koller, “Max-margin markov networks,” in Advances
in Neural Information Processing Systems (NIPS), Vancouver, Canada, 2004, win-
ner of the Best Student Paper Award.

[79] C. Sutton and A. McCallum, “An introduction to conditional random fields,” Foun-
dations and Trends in Machine Learning, vol. 4, no. 4, pp. 267–373, 2012.

[80] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science
and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Incorporation,
2006.

[81] D. J. C. MacKay, Information Theory, Inference & Learning Algorithms. New
York, NY, USA: Cambridge University Press, 2002.

[82] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Tech-
niques - Adaptive Computation and Machine Learning. The MIT Press, 2009.

[83] J. C. Platt, “Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods,” in Advances in Large Margin Classifiers. MIT
Press, 1999, pp. 61–74.

[84] R. Hänsch, “Generic object categorization in polsar images - and beyond, technis-
che universität berlin, germany,” Ph.D. dissertation, Technische Universität Berlin,
2014.

[85] M. Szummer, P. Kohli, and D. Hoiem, “Learning crfs using graph cuts,” in European
Conference on Computer Vision, October 2008.

[86] T. Joachims, T. Finley, and C.-N. J. Yu, “Cutting-plane training of structural svms,”
Machine Learning Journal, vol. 77, pp. 27–59, 2009.

[87] R. Cottle, J. Pang, and R. Stone, The Linear Complementarity Problem. Society
for Industrial and Applied Mathematics, 2009.

[88] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA:
Cambridge University Press, 2004.

[89] B. Schling, The Boost C++ Libraries. XML Press, 2011.

91



Bibliography

[90] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The pascal visual object classes challenge: A retrospective,” Inter-
national Journal of Computer Vision (IJCV), vol. 111, no. 38, pp. 98–136, January
2015.

[91] S. Suzuki and K. Abe, “Topological structural analysis of digitized binary images
by border following.” Computer Vision, Graphics, and Image Processing, vol. 30,
no. 1, pp. 32–46, 1985.

[92] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang,
and P. Torr, “Conditional random fields as recurrent neural networks,” in Interna-
tional Conference on Computer Vision (ICCV), 2015.

[93] D. Meagher, “Geometric modelling using octree encoding,” Computer Graphics
and Image Processing, vol. 19, no. 2, pp. 129–147, January 1982.

[94] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
2nd ed. Cambridge University Press, ISBN: 0521540518, 2004.

[95] M. J. Todd and E. A. Yildirim, “On khachiyan’s algorithm for the computation of
minimum-volume enclosing ellipsoids,” Journal of Discrete Applied Mathematics,
vol. 155, no. 13, pp. 1731–1744, August 2007.

[96] OpenNI, OpenNI User Guide, Open Natural Interaction, November 2010.

[97] D. C. Brown, “Close-range camera calibration,” Photogrammetric Engineering,
vol. 37, no. 8, pp. 855–866, 1971.

[98] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle ad-
justment - a modern synthesis,” in Proceedings of the International Workshop on
Vision Algorithms: Theory and Practice, ser. International Conference on Com-
puter Vision ’99. London, UK, UK: Springer-Verlag, 2000, pp. 298–372.

[99] K. Ni, D. Steedly, and F. Dellaert, “Out-of-core bundle adjustment for large-scale
3d reconstruction,” in IEEE 11th International Conference on Computer Vision
(ICCV), October 2007, pp. 1–8.

[100] S. Agarwal, N. Snavely, S. Seitz, and R. Szeliski, “Bundle adjustment in the large,” in
European Conference on Computer Vision (ECCV), ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2010, vol. 6312, pp. 29–42.

[101] R. Maier, J. Sturm, and D. Cremers, “Submap-based bundle adjustment for 3d
reconstruction from rgb-d data,” in German Conference on Pattern Recognition
(GCPR), Münster, Germany, September 2014.

[102] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 14, no. 2,
pp. 239–256, Feb. 1992.

92



Bibliography

[103] M. A. Fischler, Bolles, and R. C., “Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography,” Com-
munications of the ACM, vol. 24, no. 6, pp. 381–395, June 1981.

[104] J. McGlone, E. Mikhail, J. Bethel, and R. Mullen, Manual of Photogrammetry.
American Society for Photogrammetry and Remote Sensing, 2004.

[105] V. Lepetit, F.Moreno-Noguer, and P.Fua, “Epnp: An accurate o(n) solution to the
pnp problem,” International Journal of Computer Vision (IJCV), vol. 81, no. 2,
2009.

[106] D. G. R. Bradski and A. Kaehler, Learning OpenCV, 1st ed. O’Reilly Media,
Incorporation, 2008.

[107] D. Holz, A. E. Ichim, F. Tombari, R. B. Rusu, and S. Behnke, “Registration with
the point cloud library: A modular framework for aligning in 3-d,” IEEE Robotics
and Automation Magazine (RAM), vol. 22, no. 4, pp. 110–124, 2015.

[108] P. Kohli and P. H. S. Torr, “Dynamic graph cuts for efficient inference in markov
random fields,” IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), vol. 29, no. 12, pp. 2079–2088, December 2007.

[109] P. Kohli, M. Pawan, K. Philip, and H. S. Torr, “P3 and beyond: Solving energies
with higher order cliques,” in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), 2007.

[110] L. Spinello and K. O. Arras, “People detection in rgb-d data.” in Proceedings of
The International Conference on Intelligent Robots and Systems (IROS), 2011.

[111] M. Munaro, F. Basso, and E. Menegatti, “Tracking people within groups with
rgb-d data.” in International Conference on Intelligent Robots and Systems (IROS).
Institute of Electrical and Electronics Engineers, 2012, pp. 2101–2107.

[112] A. Teichman, S. Miller, and S. Thrun, “Unsupervised intrinsic calibration of depth
sensors via SLAM,” in Robotics: Science and Systems, 2013.

[113] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “Ros: an open-source robot operating system,” in International Con-
ference on Robotics and Automation (ICRA) Workshop on Open Source Software,
2009.

[114] J. Blanco, “The mobile robot programming toolkit (mrpt),” 2009.

[115] K. Khoshelham, “Accuracy analysis of kinect depth data,” International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS),
vol. XXXVIII-5/W12, pp. 133–138, 2011.

[116] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of kinect depth data
for indoor mapping applications,” Sensors, vol. 12, pp. 1437–1454, 2012.

93



Bibliography

[117] H. C. Daniel, J. Kannala, and J. Heikkila, “Joint depth and color camera calibration
with distortion correction,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), vol. 34, no. 10, pp. 2058–2064, October 2012.

[118] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), vol. 22, pp. 1330–1334, 1998.

[119] C. Zhang and Z. Zhang, “Calibration between depth and color sensors for commod-
ity depth cameras,” in Proceedings of the 2011 IEEE International Conference on
Multimedia and Expo (ICME). Washington, DC, USA: IEEE Computer Society,
2011, pp. 1–6.

[120] C. D. Herrera, J. Kannala, and J. Heikkilä, “Accurate and practical calibration of a
depth and color camera pair,” in Proceedings of the 14th International Conference
on Computer Analysis of Images and Patterns - Volume Part II, vol. 2nd. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 437–445.

94



Publication List

Human Recognition in RGBD combining Object Detectors and Conditional Random
Fields
Amplianitis, K., Hänsch, R., and Reulke, R.
International Conference on Computer Vision Theory and Applications
Rome, Italy, 2016

Towards a 3D Pipeline for Monitoring and Tracking People in an Indoor Scenario
using multiple RGBD Sensors
Amplianitis, K., Adduci, M., and Reulke, R.
International Conference on Computer Vision Theory and Applications
Berlin, Germany, 2015

A Quality Evaluation of Single and Multiple Camera Calibration Approaches for an
Indoor Multi Camera Tracking System
Adduci∗, M., Amplianitis∗, K., and Reulke, R. (∗equal contribution)
International Society for Photogrammetry and Remote Sensing
Riva del Garda, Italy, 2014

Calibration of a Multiple Stereo and RGBD Camera System for 3D Human Tracking
Amplianitis, K., Adduci, M., and Reulke, R.
International Society for Photogrammetry and Remote Sensing
Barcelona, Spain, 2014

3D Detection and Tracking in an Indoor Environment
Amplianitis, K., Adduci, M., and Reulke, R.
3D - NordOst, Application-oriented Workshop on Measuring, Modelling, Processing and
Analysis of 3D - Data
Berlin, Germany, 2014

3D Personenerkennung und Verfolgung mit Stereo und RGBD Kameras
Adduci, M., Amplianitis, K., Misgaiski-Haß, M., and Reulke, R.
3D - NordOst, Application-oriented Workshop on Measuring, Modelling, Processing and
Analysis of 3D - Data
Berlin, Germany, 2013

95



Publication List

96



Selbständigkeitserklärung

Ich erkläre, dass ich die Dissertation selbständig und nur unter Verwendung der von mir
gemäß § 7 Abs. 3 der Promotionsordnung der Mathematisch-Naturwissenschaftlichen
Fakultät, veröffentlicht im Amtlichen Mitteilungsblatt der Humboldt-Universität zu Berlin
Nr. 126/2014 am 18.11.2014 angegebenen Hilfsmittel angefertigt habe.

Berlin, den

Konstantinos Amplianitis

97



Selbständigkeitserklärung

98


	1 Introduction
	1.1 Motivation and Objectives
	1.2 Contributions
	1.3 Outline of the Dissertation
	1.4 Research Publications

	2 Related Work
	2.1 Object Recognition in 2D and 3D Space
	2.2 Human Motion Analysis and Tracking in 3D Space
	2.3 Multi-Sensor Human Recognition in RGBD

	3 Conditional Random Fields, Inference and Learning
	3.1 Introduction
	3.2 Preliminaries
	3.3 Markov Random Fields
	3.4 Pairwise MRF Energy Functions
	3.5 Conditional Random Fields
	3.6 Graph Cuts
	3.6.1 The Min-Cut/Max-Flow Algorithm
	3.6.2 Minimising Energy Functions using Graph Cuts

	3.7 Learning Structured Output Spaces
	3.8 Conclusions

	4 Human Recognition in RGBD
	4.1 Introduction
	4.2 People Detection
	4.3 Energy Function
	4.3.1 Unary Potentials
	4.3.1.1 Shape Prior
	4.3.1.2 Decision trees ensemble

	4.3.2 Pairwise Potentials
	4.3.2.1 Canny Edges
	4.3.2.2 Colour Distance
	4.3.2.3 3D Euclidean Distance
	4.3.2.4 Angles Normal


	4.4 Learning
	4.5 Quantitative analysis
	4.6 Qualitative analysis
	4.7 Conclusions

	5 Human Motion Estimation and Tracking in RGBD
	5.1 Introduction
	5.2 Extract the geometry of human motion
	5.2.1 Point Cloud Depth-Based Trimming
	5.2.2 Detecting Spatial Changes using an Octree
	5.2.3 Perspective Plane Projection
	5.2.4 Convex Hull
	5.2.5 Ellipsoid for human motion analysis

	5.3 Experimental Results
	5.4 Conclusions

	6 Towards a Multi Camera 3D Object Recognition System
	6.1 Introduction
	6.2 Single Camera Orientation
	6.2.1 Pinhole Camera Model
	6.2.2 Lense distortions

	6.3 Bundle Adjustment
	6.4 Registration of Point Clouds
	6.5 Sensors Pose estimation and Bundle Adjustment
	6.6 Sequential Point Cloud Registration
	6.7 Conclusions

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Appendix A Submodular Energy Functions
	Appendix B Environment Setup
	Appendix C Kinect calibration
	Appendix D XML Structure of the Ellipsoid
	Appendix E Relative 3D Transformation
	Bibliography

