

THE USE OF MULTI RESOLUTION ACTIVE SHAPE

MODELS FOR FACE DETECTION

KONSTANTINOS AMPLIANITIS

February 2012

Technische Universität Berlin

Faculty of Planning, Construction and Environment
Institute for Geodesy and Geoinformation Science

THE USE OF MULTI RESOLUTION ACTIVE SHAPE

MODELS FOR FACE DETECTION

MASTER THESIS

Submitted to the Institute for Geodesy and Geoinformation Science
at the University of Technology Berlin

in partial fulfillment of the requirements
for the Degree of

Master of Science

by

KONSTANTINOS AMPLIANITIS
[Matriculation Number: 329232]

February 2012

Supervisor: Prof. Dr - Ing, Olaf Hellwich
Department of Computer Vision & Remote Sensing

Technische Universität Berlin
Faculty of Planning, Construction and Environment
Institute for Geodesy and Geoinformation Science

DECLARATION OF AUTHORSHIP

I hereby declare that the work presented here is original and the result of my own

independent investigations, except where otherwise acknowledged. All content and

ideas drawn directly or indirectly from external sources are cited as such. This

master’s thesis has not been submitted, either in part or whole, to any other

university, institution or examining body and has not been published.

February 2012 Konstantinos Amplianitis

Berlin, Germany

ACKNOWLEDGMENTS

Thanks are due first to my supervisor, Professor Olaf Hellwich for his cooperation,

perspectives, advice and guidance whenever possible.

I am also greatly thankful to my Professor in Photogrammetry, Elli Petsa from the

Technological Educational Institution of Athens, who encouraged and supported me

to pursue my studies in Germany, particularly at Berlin Institute of Technology.

Finally, my sincerest gratitudes and appreciation go to my parents for their faith and

unlimited support to me.

iv

Contents

ABSTRACT ... vi

1 Introduction .. 1

1.1 Motivation .. 1
1.2 Layout of the thesis ... 2

2 Background Statistics .. 3

2.1 Introduction to Statistics .. 3

2.1.1 Mean .. 3
2.1.2 Standard Deviation ... 3
2.1.3 Variance ... 4
2.1.4 Covariance ... 4

2.2 Principal Component Analysis ... 5

2.2.1 What is Principal Component Analysis? ... 5
2.2.2 The Basic Principle ... 5
2.2.3 Mathematics Behind PCA ... 6
2.2.4 The Eigenvalue Problem .. 8
2.2.5 Choosing which components to ignore ... 8
2.2.6 How to apply PCA .. 9

3 Active Shape Models .. 10

3.1 Introduction ... 10
3.2 Shapes .. 11
3.3 Point Distribution Model .. 11

3.3.1 Labeling the training set ... 11
3.3.2 Aligning the Training Set .. 12
3.3.3 Capturing the statistics of the aligned shapes ... 15
3.3.4 Understanding the Shape Model .. 16
3.3.5 An Example of a Shape Model ... 17

3.4 Modeling Gray Level Appearance ... 18

3.4.1 Computing Normal to Boundary ... 19
3.4.2 Sampling along profiles .. 19
3.4.3 Forming a profile .. 20

3.5 Applying shape model ... 21

3.5.1 Calculating a suggested movement for each model point 22
3.5.2 Computing changes in pose and shape parameters 24
3.5.3 Updating the pose and shape parameters .. 25

3.6 Multi – Resolution Active Shape Models ... 25
3.7 The Viola - Jones detector .. 27

4 Software .. 31

4.1 Functions definition ... 31

v

5 Results .. 44

5.1 The me17 measure ... 44
5.2 Face Configuration of the MUCT dataset .. 46
5.3 Face detection on MUCT images .. 46
5.4 Applying the Active Shape Model on Cootes data ... 49

5.4.1 The training data .. 49
5.4.2 Aligning the training set .. 50
5.4.3 Capturing the statistics of the aligned data ... 51
5.4.4 Detection and Searching .. 55

5.5 Adding noise during training .. 57

6 Discussions and Conclusions ... 60

6.1 Discussions ... 60
6.2 Conclusions .. 63

Literature ... 65

Appendix A: Software structure .. 68

Appendix B: Aligning a pair of shapes ... 73

Appendix C: Calculating the eigenvectors of the covariance matrix when there

are fewer samples than coordinates ... 74

vi

ABSTRACT

This master thesis examines the use of a multi resolution Active Shape Model (ASM)

applied on facial features, utilizing the Viola/Jones face detector.

The method, initially introduced by Cootes, et. al, requires good initial pose

parameter values for placing a face model from its local system to the image’s

system. This is one of the most critical parts of the process from which the

convergence of the method depends on. For this reason, the Viola/Jones detector

kicked in, to initially detect the face and subsequently estimate the initial pose

parameters for positioning the face model in the search image. The testing of the

face detector as well as the quality of the model’s initial position was executed on

face images provided by the Milborrow University of Cape Town (MUCT) online

database.

For building a face model, a set of training images provided by Cootes was used and

the search images were chosen randomly from the same training set.

Experiments made initially on some frontal upright images, showed that the face

detector succeeded in all images and the placement of the face model was quite

accurate in most cases. Subsequently, the quality of the model fit using the multi

resolution active shape model approach, showed that the method converged quite

well for the inner part of the face but in the outer part, in some cases, was not that

precise.

1

1
Introduction

This thesis will describe in detail the implementation of the Active Shape Model
method, running in a multi resolution approach, on gray scale images, with the initial
pose parameters of the face model estimated by the Viola/Jones face detector.
Generally, good mathematical skills are required (especially linear algebra and
statistics) and additionally some fundamental knowledge in digital image processing.
The reader should not limit himself to the mathematical material presented within this
work but use it as a reference for concurring more solid knowledge in the near future.

1.1 Motivation
According to the method, when an instance of an object model in a local normalised
system is given, initial pose parameter values are requested for placing the model
into the image and begin the searching/convergence process. Nevertheless, given
some approximate values for translation, rotation and scaling, the process might or
might not converge. This means that the method itself is very sensitive and
dependent from the given initial values. Having faces as the object; two things are
examined within this thesis work:

• Expanding the method to a multi resolution approach. This could improve the
efficiency and robustness of the existing algorithm. It starts by searching for
face features in a coarse image and when convergence at the current level
it’s rescaled and placed as an initial position on the next image level. This
leads to a faster algorithm and the probability of failing to detect the correct
facial features, is much less.

• Estimating the initial pose parameter values needed for the placement of a
face model in the image, using the Viola/Jones algorithm.

2

Figure 1.1: Face detector Figure 1.2: Initial position of the face

model

There are several issues which are not investigated in this thesis work:

1. Developing a system that automatically measures corresponding landmark
points from a set of training images. This can be considered as an
autonomous project, since more essential research still needs to be done in
this area, albeit nothing to-date fully reliable.

2. Face recognition. This thesis deals with the detection of a face and not the
actual identity of the person in the image.

3. Working with 2D profiles (in this work only 1D profiles are considered).

4. Working with PCA of the gray level appearance of the landmark points. It
seems that it works better only on RGB images.

5. Restriction to 2D information and not 3D.

6. Not using 64bit images (RGB) but 8bit images (gray scale images).

7. Working with real time (RT) ASM.

8. Working with Active Appearance Models (AAMs)

1.2 Layout of the thesis
In the second chapter, some basics in statistics are introduced. In the third chapter, a
very detailed description of the Active Shape Model method is given, firstly explaining
the classical approach and then extending it to a multi resolution approach. In the last
part of this chapter the Viola/Jones face detector is mentioned. Subsequently in the
fourth chapter, the software developed for this thesis is presented. It includes the
most important classes and also defines - explains all the functions written for this
thesis. In the fifth chapter, results on real face data are demonstrated together with
comments about the method used. Finally, the last chapter contains discussions and
conclusions with respect to the output results of the method applied and
recommendations for improvements.

3

2
Background Statistics

This chapter begins by introducing some basics in statistics, with the intention of
understanding the Principal Component Analysis approach described later on in this
chapter. Principal Component Analysis is a mathematical procedure used in the
statistical part of the Active Shape Model method for building (in general) the object
model. The reader of this chapter should not restrict himself to the material provided
here but consider it as a way of understanding the basic idea behind it and thus be
aware how the statistical part of the Active Shape Model works.

2.1 Introduction to Statistics

2.1.1 Mean

The arithmetic mean, or the “standard” average of a population, 𝑥 is equal too:

𝑥̅ =
1
𝑁
�𝑥𝑖

𝑛

𝑖=1

 (2.1)

where 𝑥̅ is the mean value, N is the total number of the population and 𝑥𝑖 are the
values in the population.

2.1.2 Standard Deviation

Standard deviation is a widely used method for measuring the variability in statistics
and probability theory. It shows how much variation or “dispersion” the data have
from their average (also known as mean or expected value). A low standard
deviation indicates that the data points tend to be very close to the mean, whereas
high standard deviation shows that the data are spread out over a range of values.
Consider having a random variable 𝑋 = [𝑥1,𝑥2, … , 𝑥𝑛], with each value having the
same probability. Then the standard deviation, σ, is defined as:

4

𝜎 = �
1
𝑁
�(𝑥𝑖 − 𝜇)2
𝑁

𝑖=1

 (2.2)

where µ is the mean and N the total number of population.

If, instead of having equal probabilities, the values of the random variable have
different probabilities, then the standard deviation will be:

𝜎 = �
1
𝑁
𝑝𝑖�(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 (2.3)

where,

𝜇 =
1
𝑁
�𝑝𝑖𝑥𝑖

𝑁

𝑖=1

 (2.4)

Have in mind that trying to estimate the standard deviation of the sample, is
different from estimating the sample standard deviation.

In the first case the standard deviation is computed by the formula [2.2], whereas in
the second case it would be divided with N-1 samples.

2.1.3 Variance

In probability theory and statistics, the variance is a measure of how far a set of
numbers are spread out from each other. It is one of the several descriptors of a
probability distribution, describing how far the numbers lie from the mean (expected
value). Mathematically, it is calculated by taking the standard deviation and rising it to
the power of 2.

𝜎2 =
1
𝑁
�(𝑥𝑖 − 𝜇)
𝑁

𝑖=1

 (2.5)

2.1.4 Covariance

In probability theory and statistics, covariance is a measure of how much two
variables change together. Variance is been considered being a special case of the
covariance when the two variables are identical. The formula for computing the
covariance matrix of two variables X and Y is:

𝐶𝑂𝑉(𝑋,𝑌) =
∑ (𝑋𝑖 − 𝑥̅)(𝑌𝑖 − 𝑦�)𝑛
𝑖=1

𝑁
 (2.6)

where 𝑥̅, 𝑦� are the mean of X and Y respectively and N is the size of the population.
Again, there may be times where the above formula is divided by N-1 as said
previously.

5

In case of more than two populations (Lets say p size) the covariance matrix S,
would look like:

𝑆 =

⎣
⎢
⎢
⎢
⎡ 𝑠1

2 𝑠12 ⋯ 𝑠1𝑝
𝑠21 𝑠22 ⋯ 𝑠2𝑝
⋮ ⋮ ⋱ ⋮
𝑠𝑝1 𝑠𝑝2 ⋯ 𝑠𝑝2 ⎦

⎥
⎥
⎥
⎤
 (2.7)

where on the main diagonal are the variances of every variable population and on the
off diagonal the covariance between them.

2.2 Principal Component Analysis

2.2.1 What is Principal Component Analysis?

Principal Component Analysis (PCA), also known as Hotelling transform is a method
that reduces the dimensions of the data by computing the covariance matrix between
the data. The first people that started working on this method where Pearson (1901)
and Hotelling (1933). Pearson was involved in trying to find lines and planes that best
fit a set of points in a n dimensional space. On the other hand, Hotelling tried to
increase his “components”, that is the variance in the original variables also known
as “principal components”. Both Pearson and Hotelling, came across with the
eigenvalue problem (described later on in this chapter), which was hard to solve for
an order higher than four and a computer system was needed to process all this
information. Today PCA, with the help of powerful computer systems, is a method
widely used and established in different fields of applications.

2.2.2 The Basic Principle

As in other transformations (e.g Helmert Transform), PCA tries to transform data
from one system to another, where a new set of basis vectors are used. However, in
the PCA case, the basis vectors do not remain constant but they vary based on the
data being transformed.
PCA is a linear transformation and the new basis vectors, denoted as 𝑒𝑖 are
orthogonal between them:

𝑒𝑖𝑇𝑒𝑗 = 𝛿𝑖𝑗 = �
1 𝑖𝑓 𝑖 = 𝑗
0 𝑖𝑓 𝑖 ≠ 𝑗

� (2.8)

where 𝛿𝑖𝑗 is the Dirac’s delta function.

Since PCA is a linear transformation, it means is has translation and rotation
parameters. Thus, if x are the input data and y the transformed data, the
transformation is:

𝑦 = 𝐴(𝑥 − 𝜇𝑥) (2.9)

where A contains the new basis vectors and thus 𝐴 = [𝑒1 𝑒2, … , 𝑒𝑛]𝑇 and 𝜇𝑥 is the
mean of the data set.

6

The first figure shows the input data where each sample of the data is denoted as
𝑥𝑖 = [𝑥1𝑖 𝑥2𝑖]𝑇. Second figure illustrates the transformed data where each sample is
denoted as 𝑦𝑖 = [𝑦1𝑖 𝑦2𝑖]𝑇 and is calculated using equation [2.9]. The first two sub
figures of figure [2.1] show the transformation from one system to another with the
main variance expressed in the first two variables 𝑌1 and 𝑌2. Ignoring the second
variable, the main variance of the data is kept. In this case the information is
presented in a more compact form (see last sub figure).
In figure [2.1], ignoring one variable might not make any difference. Nevertheless, if
the dimensionality of the data is 30 (random number) and their variability could be
expressed by only two variables, then a compact representation could be achieved.
Therefore, PCA is applied in cases where high dimensionality of data is present.
Although PCA is used to reduce the dimensions of the data, one of its main
properties is that new data set could be created, similar to the initial ones using only
the new variables. In figure [2.1] the data are uncorrelated and remain as is in lower
dimensions too.

2.2.3 Mathematics Behind PCA

As already mentioned, the transformation is given by equation [2.9]. To find A and
subsequently apply the transformation, the following steps have to be done:

Equation [2.9] could be written as 𝑦 = 𝐴𝑥′ where 𝑥′ = 𝑥 − 𝜇𝑥 and the inverse
transformation is equal to 𝑥′ = 𝐴−1𝑦. Considering that A is an orthogonal matrix
where 𝐴−1 = 𝐴𝑇, then 𝑥′ = 𝐴𝑇𝑦 can be re written as:

𝑥′ = [𝑒1 𝑒2 … 𝑒3] ∙ 𝑦 = �𝑦𝑖𝑒𝑖

𝑛

𝑖=1

 (2.10)

If m components are used (𝑚 < 𝑛), then some information could be lost during the
inverse transformation and that could lead to implausible 𝑥′ shapes. Thus, an
estimate 𝑥�′ is defined:

𝑥�′ = �𝑦𝑖𝑒𝑖

𝑚

𝑖=1

 (2.11)

As mentioned in the beginning of this section, main purpose is to find A so that the
difference between 𝑥′ and 𝑥�′ is:

Figure 2.1: Basic Principle of PCA

μx1 X1

Χ2
e1

e2

μx2

Υ2

Υ1

Υ1

Transformation Reduce dimensions

7

𝛼 = 𝐸{(𝑥′ − 𝑥�′)𝑇 (𝑥′ − 𝑥�′) } (2.12)

Putting equations [2.10] and [2.11] together results:

𝛼 = 𝐸 �� � 𝑦𝑖𝑒𝑖

𝑛

𝑖=𝑚+1

� 𝑇 � � 𝑦𝑖𝑒𝑖

𝑛

𝑖=𝑚+1

� � (2.13)

Because of the orthonormality introduced in [2.8], equation [2.13] becomes:

𝛼 = 𝐸 � � 𝑦𝑖2
𝑛

𝑖=𝑚+1

 � (2.14)

From equation [2.9] it comes out that 𝑦𝑖 = 𝑒𝑖𝑇𝑥′ giving:

𝛼 = 𝐸 � � �𝑒𝑖𝑇𝑥′�
2

𝑛

𝑖=𝑚+1

� = 𝐸 � � �𝑒𝑖𝑇𝑥′��𝑒𝑖𝑇𝑥′�
𝑛

𝑖=𝑚+1

 � (2.15)

Since 𝑒𝑖𝑇𝑥′ = 𝑥′𝑇𝑒𝑖, equation [2.15] becomes:

𝛼 = 𝐸 � � �𝑒𝑖𝑇𝑥′��𝑥′
𝑇𝑒𝑖�

𝑛

𝑖=𝑚+1

� = 𝐸 � � 𝑒𝑖𝑇𝑥′𝑥′
𝑇𝑒𝑖

𝑛

𝑖=𝑚+1

� (2.16)

Changing the order of the summation (because 𝑒𝑖 is deterministic) it exists:

𝛼 = � 𝑒𝑖𝑇𝐸�𝑥′𝑥′
𝑇�

𝑛

𝑖=𝑚+1

𝑒𝑖 (2.17)

Setting as 𝐶𝑥 = 𝑥′𝑥′𝑇 then:

𝛼 = � 𝑒𝑖𝑇𝐶𝑥

𝑛

𝑖=𝑚+1

𝑒𝑖 (2.18)

At this point, in order to find the best/optimal 𝑒𝑖 the square error function should be
minimised. This is done by defining a function using Lagrange multiplier:

𝑔(𝑒𝑖) = 𝑒𝑖𝑇𝐶𝑥𝑒𝑖 − 𝜆�𝑒𝑖𝑇𝑒𝑖 − 1� (2.19)

Applying partial first order derivative to the previous function it becomes:

�𝑔(𝑒𝑖) = 0 => �𝑔(𝑒𝑖) = 𝐶𝑥𝑒𝑖 + 𝐶𝑥𝑇𝑒𝑖 − 𝜆2𝑒𝑖 = 0 (2.20)

Since 𝐶𝑥 = 𝐶𝑥𝑇, equation [2.20] becomes:

𝐶𝑥𝑒𝑖 − 𝜆𝑒𝑖 = 0 => (2.21)

(𝐶𝑥 − 𝜆𝐼) ∙ 𝑒𝑖 = 0 (2.22)

8

where I is the identity matrix.

2.2.4 The Eigenvalue Problem

Equation [2.22] is known as the eigenvalue problem and it’s a problem which is seen
in other applications besides PCA. To solve this problem, the determinant of equation
[2.22] is taken. Due to the fact that equation [2.22] is a homogeneous system of the
form 𝐴𝑥 = 0 and has no trivial solution, the determinant of the coefficient matrix is
zero:

𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡(𝐶𝑥 − 𝜆𝐼) = 0 (2.23)

Finding the polynomials of the above equation and getting the square root of them,
these are the eigenvalues 𝜆𝑖 of 𝐶𝑥. Every eigenvalue 𝜆𝑖 corresponds to the i’th
eigenvector ei and also 𝜆𝑖 ≥ 𝜆𝑖+1.
After finding the eigenvectors, they have to be arranged as row vectors in the A
matrix and then equation [2.9] is ready to be used.

2.2.5 Choosing which components to ignore

Since the eigenvectors have been computed, the input data could be transformed.
The only problem is that the dimensions of the input data haven’t been reduced.
Thus, the task now is to reduce the dimensions of the data without losing much
information about the initial data.
There are several existing methods for this purpose. Nevertheless, the one that is
worth describing is the m – method. The main goal of all methods is to maintain as
much variation of the initial data as possible in the smallest space possible.
According to the m – method, since the i’th eigenvalue is equal to the variance of the
i’th variable and given that 𝜆𝑖 ≥ 𝜆𝑖+1, the amount of variability kept is defined as:

𝐼𝑘 =
∑ 𝜆𝑖𝑚
𝑖=1

∑ 𝜆𝑖𝑛
𝑖=1

∙ 100% (2.24)

where 𝜆𝑖 is the i’th eigenvalue, m is the number of eigenvectors used, n is the
dimensions of the input data and 𝐼𝑘 is the percentage of variance kept in the
transformation.

Figure 2.2: The preserved and removed information

I1

I2

m n eigenvectors

eigenvalues

9

The figure above shows the eigenvectors in the X axis with their associated
eigenvalues in the Y axis.
The value m is used as a threshold value between the selected and ignored
eigenvectors, I1 represents the variation kept and I2 the ignored one. This technique
is known as the m – method.

2.2.6 How to apply PCA

To apply PCA five steps have to be done. The first step is to acquire the data. In this
case the more data used the better the method will work. The second step is to
compute the covariance matrix 𝐶𝑥 of the input data. This could be calculated from
𝐶𝑥 = 𝑉𝑉𝑇 where 𝑉 = [𝑥1′ , 𝑥2′ , … , 𝑥𝑛′] and 𝑥𝑖′ = 𝑥𝑖 − 𝜇𝑥. Third step is to derive the
eigenvectors and eigenvalues from equation [2.23]. Subsequently, when the
eigenvalue problem has been solved, it has to be determined which eigenvalues to
keep. For this purpose the m – method could be used. Last step concerns mapping
the data in a lower dimension using equation [2.9].

10

3
Active Shape Models

This chapter describes in detail the Active Shape Model method. It begins with the
labeling of the object in training images followed by the alignment of the data sets. It
continues with the extraction of some statistical information about the training
shapes. Subsequently, a description of the method for getting the gray level
appearance information of each model point. Then, the placing of the face model in
the testing image to detect the said object. Furthermore, an improved multi resolution
approach is described. Last but not least, some basic information of the Viola Jones
algorithm is given.

3.1 Introduction
Active Shape Models is a method that was developed by T.F. Cootes et.al for
detecting known objects in images. Till now, building rigid models of objects for
image understanding was well achieved. However, there are cases where objects of
the same class are not identical, thus rigid models wouldn’t work, for example the
shape of a heart, where it is one object represented from different shapes and sizes.
With the method explained in this chapter, new models could be produced from
images representing the same object with different shape/ size variations. In addition,
Cootes tried to create models that although vary but still preserve the structures of
the object class they belong to.
For the method to work, some points are needed that represent the shape of the
object within different training examples. These sets are then aligned in order to
minimize the variation between equivalent points. From these aligned data sets, a
“Point Distribution Model” is created, which gives a mean shape of the aligned
shapes and some model parameters that express the different variations within the
training set.
Given this model and an image that contains this object, an iterative scheme could
be applied that would find the appropriate pose and model parameters which best fit
the model in the object.

11

In order for the process to start, some approximate pose parameters have to be
given to place the model within the image. That involves finding the best translation,
rotation and scaling parameters which will best fit the model in the image. This
method is also very similar with the Active Contour Models of Kass et.al. The main
difference is found in the global shape constraints, hence to differentiate from the
Active Contour Models it was named Active Shape Models. The main advantage of
this method is that the model can only deform in ways which are similar to those in
the training set.

3.2 Shapes
A shape, by definition in [15] is “all the geometrical information that remains
when location, scale and rotational effects are filtered out from an object”. That
means that it remains invariant to Euclidean similarity transformations. A shape is
described by a set of points which in this thesis are expressed in the form seen in Eq.
[3.1]. An example of a shape is shown below, together with its points (in this example
arbitrary coordinates) that define it.

Number
of

Points
x y

1 2.0 2.0
2 0.0 0.0
3 4.0 0.0

𝑥 =

⎣
⎢
⎢
⎢
⎢
⎡
2.0
2.0
0.0
0.0
4.0
0.0⎦

⎥
⎥
⎥
⎥
⎤

Figure 3.1: Left a simple shape, in a triangular form, defined by three points.
Middle is the same shape defined as an array. Right is the same shape described
as a vector (Self illustrated).

The points from the above figure move in some invariant way. If the shape moves
(translated), then the shape remains the same. If it’s rotated or scaled, it still remains
the same shape. The edges are not considered part of the shape but are used to get
the relationship between the points.
The distance between two points is the Euclidean distance between the points. The
distance between two shapes, according to Procrustes in [2] is equal to the sum of
the distances between their corresponding points. The Procrustes distance between
two shapes 𝑥1 and 𝑥2 is the root mean square distance between the shape points
after alignment �(𝑥1 − 𝑥2) ∙ (𝑥1 − 𝑥2). The centroid 𝑥̅ (also known as the position of
the shape), is the mean of the point positions. The size of the shape is defined as the
root mean square distance between the shape points and the centroid.

3.3 Point Distribution Model

3.3.1 Labeling the training set

Every shape is expressed by a number of landmark points, also known as “landmark
points”. According to Bookstein [25], every landmark point is described and
categorized according to their usefulness. Thus, they can be expressed in three
different categories:

2 3

1

12

• Points that represent a particular part of the object, such as the centre of an
eye or sharp boundaries.

• Points that are placed at the highest part of the object with a particular
orientation or curvature extrema.

• Points which are being interpolated from other points of types 1 and 2. In this
case the points are equally spaced.

The figure below indicates the annotation of a face that contains 79 points. In
general, as per Bookstein, points of type 1 are preferable to those of type 2, since
they are much easier to identify. Nevertheless, points of type 2 and 3 are always
necessary due to the fact that they are used to describe the shape of the object with
much more detail.

Figure 3.2: Seventeen nine landmark points describing the shape of a face (Marios
Savvides, et.al, 2009).

The simplest method for choosing landmark points for each training image, is usually
achieved by an expert (manually). Though, this can be very time consuming
especially when the number of the training images is very large. In practice,
automatic and semi – automatic methods have been developed to do this annotation
as automated as possible.
As mentioned previously, every shape x, is described in 2D by n points placed in a
vector of the form:

𝑥 = (𝑥1,𝑦1, … , 𝑥𝑛,𝑦𝑛)𝑇 (3.1)

3.3.2 Aligning the Training Set

In order to be able to compare equivalent points from different shapes in the training
set, they should be aligned within a common coordinate frame. There is considerable
literature concerning the alignment of shapes. Although the most frequently used
method is based on Procrustes Analysis [2], Cootes in [25] explains a modification of
this method. This is done by scaling, rotating and translating the shapes so that the
weighted sum of squares of distances between equivalent points is minimized
(energy function):

𝐸𝑗 = �𝑥𝑖 − 𝑀�𝑠𝑗,𝜃𝑗��𝑥𝑗� − 𝑡𝑗�
𝑇𝑊�𝑥𝑖 − 𝑀�𝑠𝑗,𝜃𝑗��𝑥𝑗� − 𝑡𝑗� (3.2)

where:

13

�𝒙𝒊,𝒙𝒋� are the coordinates of a pair of shapes
𝑴�𝒔𝒋,𝜽𝒋��𝒙𝒋� is a rotation by theta and scaling by s analyzed as:

𝑀(𝑠,𝜃) �
𝑥𝑗𝑘
𝑦𝑗𝑘� = � 𝑠 ∙ 𝑐𝑜𝑠𝜃 𝑠 ∙ 𝑠𝑖𝑛𝜃

−𝑠 ∙ 𝑠𝑖𝑛𝜃 𝑠 ∙ 𝑐𝑜𝑠𝜃� �
𝑥𝑗𝑘
𝑦𝑗𝑘�

(3.3)

where 𝒕𝒋 is the translation of the second shape:

𝑡𝑗 = �𝑡𝑥𝑗, 𝑡𝑦𝑗, … , 𝑡𝑥𝑗, 𝑡𝑦𝑗�
𝑇 (3.4)

and W is a diagonal matrix of weights for each point.
The meaning of the weights is to provide the amount of significance of each point,
that is to show which points are more stable compare to others. So if 𝑅𝑘𝑙 is the
distance between points k, l and 𝑉𝑅𝑘𝑙 is the variance of this distance over the training
set, then the weight 𝑤𝑘 for the kth point is equal too:

𝑤𝑘 = ��𝑉𝑅𝑘𝑙

𝑛−1

𝑡=0

�

−1

 (3.5)

If a point tends to move more, compared to the other points in the training set, then
the variance is large, otherwise is small.
The alignment procedure requires normalization of the shapes. This involves setting
the current mean shape at some suitable defaults for translation, rotation and scaling.
For the translation phase that is to offset the shape to the origin so its center of
gravity (C.o.G) be at the point zero of the coordinate system. This is achieved by
removing the translation from the center of the shape with respect to the systems
origin from all its points. This will result an automatic shift of the shape to the origin.
The next step is to normalize the scale factor by scaling the mean distance to the
origin for each component to 1 (The mean Euclidean distance will then be √2). The
last step of the normalization is the rotation part, where according to Cootes [25], it
should be a rotation where a specific part of the object is always on top. A solution to
this could be a rotation which is equal to the mean value of the arctangent of all
landmark points. In mathematical notation it’s equivalent to:

𝑎𝑛𝑔𝑙𝑒�������� =
∑ 𝑎𝑡𝑎𝑛2 �𝑌𝑡 𝑋𝑡� �𝑛−1
𝑡=0

𝑛
 (3.6)

The final rotation is obtained by subtracting the mean angle from every 𝑎𝑡𝑎𝑛2 �𝑌𝑡 𝑋𝑡� �.

Figure 3.3. Alignment of a set of faces with the mean shape drawn on top with a
thicker line (Milborrow, 2007).

14

Another solution , which is the one implemented within this thesis is to always rotate
a shape according to the rotation that the reference shape has (usually the first
shape in the training set).
Normalizing the mean shape to a default scale and pose (translation and rotation)
ensures that the algorithm will converge. Experiments have shown that the alignment
converges with very few iterations. Note, that normalizing the mean shape and then
align all others to it, is not the same as normalizing every shape individually. If every
shape was constrained to have a normalized scale equal to 1, a distortion of the
model could occur during the alignment face. On the other hand, if all shapes have to
align to the current mean shape, then they will have a scale similar to that of the
mean. Result from the alignment of a set of training faces is shown above in Fig. [3.3]
together with the mean shape drawn on top. A simple alignment algorithm proposed
for face alignment is as follows:

Graph 3.1: Alignment algorithm for faces (Self illustrated).

Convergence?

Done. Shapes aligned

Set a reference shape (usually the first shape)

Scale the reference shape to unit size. This could be set to
𝑥̅0

Align all shapes to the current mean shape

Recalculate the mean shape from the aligned shapes

Normalize (constrain) the new mean shape (align to 𝑥̅0 and scale to unit weight)

Input set of unaligned shapes

No

Yes

15

3.3.3 Capturing the statistics of the aligned shapes

Having a set of aligned shapes, their statistic could be derived. All aligned shapes
form a distribution within a 𝑛𝑑 dimensional space. From this distribution, new
examples could be generated similar to the ones coming from the aligned shapes.
After the alignment of a training set, some clouds are created around each landmark
point. These clouds could be either dense or defused. In the case of dense, the
variability is less and if defused, much greater. The Point Distribution Model in this
case tries to create a model of this variability for each one of these clouds.
Have in mind that the position of each landmark is not independent but dependent
from all other points. Having every aligned shape represented by a point in a 2𝑛
dimensional space, then in case of N number of aligned shapes, there exists N points
in the 2𝑛 space. All these N points are assumed that they lie within what is called
Allowable Shape Domain (ASD). The size and shape of the ASD depends upon the
points distribution within this ASD. Every 2𝑛 point within this ASD can create shapes
similar to the ones in the training set. According to Cootes [25], an assumption has
been made that the shape of this domain is approximately Ellipsoidal with the center
of the ellipse being the mean shape and the major axis is the variation of the mean
shape.

Given a set of N aligned shapes 𝑥𝑖, the mean shape 𝑥̅ (the center of the ASM) could
be calculated from:

𝑥̅ =
1
𝑁
�𝑥𝑖

𝑁

𝑖=1

 (3.7)

Then the 2𝑛 × 2𝑛 covariance matrix S can be calculated using:

𝑆 =
1
𝑁
�𝑑𝑥𝑖

𝑁

𝑖=1

𝑑𝑥𝑖𝑇 (3.8)

The principal axes of the ellipsoid which describe the variation of a shape are
expressed by 𝑝𝑘 (𝑘 = 1, … ,2𝑛), unit eigenvectors of S, so that:

𝑆𝑝𝑘 = 𝜆𝑘𝑝𝑘 (3.9)

where 𝜆𝑘 is the eigenvalue of S and 𝑝𝑘𝑇𝑝𝑘 = 1.

According to the theory of Principal Component Analysis, the eigenvectors of the
covariance matrix S corresponding to the largest eigenvalues, describe or capture
most of the variation of the shapes statistics (they represent the largest axes of the
ellipsoid). Thus, the 2𝑑 ellipsoid could be approximated by an ellipsoid of lower
dimensions, let’s say t.
One way of calculating the smallest number of modes t that describe the largest part
of the variation of 𝜆𝑇 where,

𝜆𝑇 = �𝜆𝑘

2𝑛

𝑘=1

 (3.10)

is the total variance of all the variables:

16

�𝜆𝑖

𝑡

𝑖=1

≥ 𝑓𝑢𝜆𝑇 (3.11)

where 𝑓𝑢 is the part of variance to be explained by the shape model and also defines
the number of modes (experiments made, say it should have a value of 0.98 with
alignment or 0.995 without alignment).
Any point in the ASD can be reached - expressed by taking the mean corresponding
point and adding a linear combination of the eigenvectors. Thus, every shape in the
training set can be approximated by taking the mean shape and a combination of the
deviations obtained from the first t modes:

𝑥 = 𝑥̅ + 𝑃𝑏 (3.12)

where,

 𝑥̅ is the mean shape (of the ASD),
𝑃 = (𝑝1,𝑝2, … ,𝑝𝑡) is the matrix with the first t eigenvectors and
𝑏 = (𝑏1,𝑏2, … , 𝑏𝑡)𝑇 is a vector of weights (model parameters).

By varying the vector of weights b within suitable limits, new shapes could be
generated similar to those in the training set. The limits for 𝑏𝑘 are derived by
examining the distribution of the parameter values used to derive the training set.
Thus, the limits applied are:

−3�𝜆𝑘 ≤ 𝑏𝑘 ≤ 3�𝜆𝑘 (3.13)

which is three standard deviations from the mean, where most of the variation is
expressed.

Another method for choosing model parameters 𝑏𝑘 is to compute the Mahalanobis
distance 𝐷𝑚 from the mean and if the difference is less than a 𝐷𝑚𝑎𝑥 (where Cootes
in most papers sets it to 3) then the value for the specific element of the model
parameter vector is maintained. In a mathematical notation that is:

𝐷𝑚2 = ��
𝑏𝑘2

𝜆𝑘
�

𝑡

𝑘=1

≤ 𝐷𝑚𝑎𝑥
2 (3.14)

3.3.4 Understanding the Shape Model

It is easier to use rectangles to describe the shape model rather than complicated
face shapes. The figure below shows a number of rectangles, symmetrical around
the origin. To specify the four points of any of these rectangles, eight numbers are
required: four, x and y coordinates. Taking into account what was said about the
symmetry, the rectangles could actually be described by just two parameters: its
width and height.

17

Figure 3.4: Rectangular shapes (Self illustrated).

Figure 3.5
Variation of the first component (Self
illustrated).

Figure 3.6
 Variation of the second component
(Self illustrated).

Using Eq. [3.12] to generate a shape model (in this case a rectangle) the form it
takes is:

𝑥� = �

23 12
−23 12
−23 −12
23 −12

�+ 𝑏0 �

12 4
−12 4
−12 −4
12 −4

� + 𝑏1 �

−4 12
4 12
4 −12
−4 −12

�+ ⋯ (3.15)

The eigenvalues of the covariance matrix 𝑆 sorted by descending order are 3778,
444, 2, 0.1 etc. There are eight eigenvalues altogether, two for every landmark point,
that is one for x and y element. From these eight eigenvalues, only the first two
remain and that’s because they represent most of the shapes variation (>98%). Thus,
the shapes can be parameterized by just two parameters, 𝑏0 and 𝑏1. The first
parameter varies the first eigenvector and in this case it changes the size of the
generated rectangle. The second parameter varies the second eigenvector, which in
this example adjusts the aspect ratio of the shape.

3.3.5 An Example of a Shape Model

Figure (3.7) shows example shapes from a training set of 300 labeled faces. Each
image is annotated with 133 landmarks.

18

Figure 3.7: Example shapes from training set of shapes (T.F. Cootes & C.J.Taylor,
2004).

The shape model has 36 modes which correspond to approximately 98% of the total
variance of the landmark points. The figure below shows the result of varying only the
first three shape parameters within ± 3 standard deviations from the mean shape and
setting the other shape parameters to zero.

Figure 3.8: Varying each of the first three shape parameters within ±3 s.d (T.F.
Cootes & C.J.Taylor, 2004).

3.4 Modeling Gray Level Appearance
In order to detect an instant of a model within new images, not only the shape but
also gray-level appearance is important. This is done by examining the statistics of
the gray level appearance around the neighbor of each landmark point. Since every
point corresponds to a particular part of an object, the gray level appearance of that
point in different example images will not be identical but quite similar. Cootes in [28]
uses the gray level information to compute the movement of the points in a different
position and finally detect the contour of the object as accurate as possible.

19

3.4.1 Computing Normal to Boundary

Although the gray level information around the area of each point is considered being
2D, within this thesis the limitation will be done only on 1D information.
In this case, the gray level information is derived from 1D profiles, normal to the
boundary passing through the points. This profile normal, also known as “whisker” is
defined from the following equations:

Figure 3.9: Normal to a landmark point (Self illustrated).

�𝑡𝑥 , 𝑡𝑦� ≈
�𝑑𝑥 ,𝑑𝑦�

�𝑑𝑥2 + 𝑑𝑦2
 (3.16)

where 𝑑𝑥 = 𝑋𝑖+1 − 𝑋𝑖−1 and 𝑑𝑦 = 𝑌𝑖+1 − 𝑌𝑖−1

The normal to the boundary is created by computing firstly the tangent to the current
point and then rotating it clockwise by 90 degrees. The normal is a unit vector and
has a length of one.

3.4.2 Sampling along profiles

If the profile runs from 𝑝𝑖𝑠𝑡𝑎𝑟𝑡 to 𝑝𝑖𝑒𝑛𝑑 and has length of 𝑛𝑝 pixels, then every interval
point on this profile normal is computed from:

𝑦𝑖𝑘 = 𝑝𝑠𝑡𝑎𝑟𝑡 +
𝑘 − 1
𝑛𝑝 − 1

(𝑝𝑖𝑒𝑛𝑑 − 𝑝𝑖𝑠𝑡𝑎𝑟𝑡) (3.17)

where 𝑦𝑖𝑘 is the kth point on the profile normal i (see Fig. [3.10]).

Usually the distance between each interval point is equal to 1 pixel.

 (Xi+1, Yi+1)

 (Xi-1, Yi-1)

Normal (nx, ny) = (-ty, tx)

Tangent (tx, ty)

20

Figure 3.10: Interpolated points on the whisker (Self illustrated).

3.4.3 Forming a profile

Having computed the normal at each model point together with the linear intervals on
these lines, the last step is to form the gray level appearance of each point. This is
achieved by setting each element (interpolated or interval point) on the profile vector
(whisker) of a landmark point, to the gray level intensity (0 - 255) of its image below it
(see Fig. [3.11]).

Figure 3.11: Profile normal of a point (Self illustrated).

The above figure shows interpolated points (blue color) placed on a profile normal
(red colour) of a model point (point at which the red and green lines intersect) with
the corresponding pixels that they belong to, marked with white colour. Sometimes
you may have two interpolated points placed in one pixel, so in that case they will be
assigned with the intensity of that pixel.

The next step is to replace each profile element by the intensity gradient.

Profile normal
to boundary

Interpolate at
these points

Model
point

Model
boundary

21

This is done by setting the difference between the intensity of the next point and the
previous point, divided by two (in some literature the first derivative might be found
without the deviation by 2 but only with the intensity differences, which is also
considered correct):

𝑔𝑖𝑗𝑘 =
�𝐼𝑗�𝑦𝑖(𝑘+1)� − 𝐼𝑗�𝑦𝑖(𝑘+1)��

2
 (3.18)

Divide each element of the resulting vector with the sum of all absolute elements of
that vector (normalizing the profile):

𝑔𝑖𝑗′ =
𝑔𝑖𝑗

� �𝑔𝑖𝑗𝑘′ �
𝑛𝑝

𝑘=1

(3.19)

The purpose of normalization is to reduce the effect of image lighting and contrast.
For each point i, calculate the mean normalized profile:

𝑔̅𝑖 =
1
𝑁𝑆
�𝑔𝑖𝑗′
𝑁𝑆

𝑗=1

 (3.20)

Last but not least, calculate the 𝑛𝑝 × 𝑛𝑝 covariance matrix, 𝑆𝑔𝑖 that will give a
statistical description for the profile of the current label point.
Given a simple numerical example, suppose a profile normal consists of (2·8+1)
interpolated points (that is 8 points at each side of the profile normal plus one for the
current model point position). The mean normalized derivative profile 𝑔̅𝑖 will then
have a size of 17x1 and a covariance matrix of size 17x17.

3.5 Applying shape model
Having generated acceptable shape models of an object within ± 3 standard
deviations and the grey level of appearance around each point, this information could
be used to find examples of the modeled structures within an image. In general, this
procedure involves two mandatory stages:

• Number of hypothesis made, giving approximate locations of the model points
(iteration process)

• From all hypotheses, the best one will be chosen.

The initial hypothesis involves finding and placing the model shape from its local
coordinate system to the image system. This is done by applying the “appropriate”
initial pose (translation, rotation and scaling) and shape parameters, assuming that
the position of the object within the searching image is known.
An instance of a model, X, for a set of pose and shape parameters are given by:

𝑋 = 𝑀(𝑠,𝜃)[𝑥] + 𝑋𝑐 (3.21)

where,

𝑀(𝑠,𝜃) is a rotation by 𝜽 and a scaling by s

22

x is the position of the model shape within the local coordinate frame
𝑋𝑐 is the position of the center of the model in the image frame.

Cootes in [28] suggests an iterative method for refining the shape and pose
parameters so as to give a better match between a model instance and the
structures in the image. The algorithm is as follows:

1. Initialize the shape parameters b to zero
2. Generate the model instance 𝑥 = 𝑥̅ + 𝑃𝑏. This means that the model instance

will be equal to the mean shape.
3. Find the pose parameters to place the model shape into the image
4. Compute the proposed adjustments to the points
5. Find the pose parameters that align the current shape to the updated shape.
6. Project back to the local coordinate system the updated shape and compute

the coordinate difference from the previous state of the shape.
7. Updated the shape parameters b
8. Apply constraints on b
9. If not converged1, return to step 2.

3.5.1 Calculating a suggested movement for each model point

Given an initial estimate of the model points position within the image, new
suggested points have to be calculated which will move each model point to a better
position. Making the assumption that model points represent the boundary of an
object, their movement to a better position (adjustment) will shift them towards the
edges of the image object. Having the gray scale appearance of each model point
from training, the adjustment involves finding the position/region which better
matches the sampled model.
For an arbitrary point of the shape model placed in the image, a derivative (or
sample) profile g is extracted of some length 𝑙(> 𝑛𝑝). The profile model is then
shifted to each position of the sample profile till it finds the position where it best
fits\matches.

Figure 3.12: Part of an object boundary
approximating the edge of an image
object (Self illustrated).

Figure 3.13: Suggested movement of a
point along the normal boundary,
towards the direction where the profile
model best fits the sampled profile (Self
illustrated).

1 Convergence means applying an iteration which will not produce any significant change in the pose nor the shape
parameters. The following chapters will provide a more detailed explanation of the complete process.

Image
object

Model
Points

Model
Boundar

Image
object

23

Mathematically speaking, the process of trying to find the position in the sample
profile where the profile model best fits is expressed by the square of the
Mahalanobis distance:

𝑓(𝑑) = (ℎ(𝑑) − 𝑔̅)𝑇 𝑆𝑔−1 (ℎ(𝑑) − 𝑔̅) (3.22)

where,

ℎ(𝑑) is a sub – interval of g of length 𝑛𝑝, centered at point d within the sample profile
𝑔̅ is the normalized mean gray level appearance of that model point and
𝑆𝑔−1 is the inverse of the covariance matrix of the model point

The value of 𝑓(𝑑) decreases as the fit improves. Thus, the point of best fit is the one
for which 𝑓(𝑑) is minimum.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

 1 2 3 4 5 6 7 8 9

 -4 -3 -2 -1 0 1 2 3 4

Figure 3.14: Movement of the profile model along the sampled profile (Self
illustrated).

The above figure is used for the reader to have a better “visualized” representation of
how the quality of fit is found between the sample and model profile.
According to this, the sampled profile has a length equal to 17 (2·l+1) pixels and the
model profile of 9 (2·np+1) pixels.
The model profile, as mentioned previously should always be smaller than the
sample profile. Subsequently, the model profile runs from left to right at 9 different
locations and the quality of measure is calculated from Eq. (3.22). The number of
offsets are calculated from:

𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑜𝑓𝑓𝑠𝑒𝑡𝑠 = (2𝑙 + 1) − �2𝑛𝑝� (3.23)

As it can be seen, the minimum position (best fit) is found at the location 3 out of 9
but because all distances start from the center point of the samples profile (that is 0)
it’s actually minimum at the location -2 of the sampled profile. The position of the
minimum, with the starting point being the center of the sampled profile, is calculated
from:

𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = (𝑚𝑖𝑛𝑃𝑜𝑠 − 1) − ((𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑜𝑓𝑓𝑠𝑒𝑡𝑠 − 1) 2⁄) (3.24)

The displacement vector from the current location the model point is placed on the
image, to the location of best fit, is calculated by:

l = 8

[dX, dY]

Range of offsets

Sampled
profile

Profile
model

np = 4

24

𝑑𝑋 = 𝑛𝑥 ∙ 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡

(3.25)

𝑑𝑌 = 𝑛𝑦 ∙ 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡

(3.26)

By adding the corrections to the current model point, the position of the suggested
new point is been calculated.

3.5.2 Computing changes in pose and shape parameters

After adjusting the model shape from its current position X, to a new suggested
position [X + dX], the pose and shape changes that connect the current with the new
shape have to be calculated. If the current estimate of the model is centred at (𝑋𝑐 ,𝑌𝑐)
with orientation 𝜃 and scale s, a new translation (𝑑𝑋𝑐 ,𝑑𝑌𝑐), rotation 𝑑𝜃 and scaling
factor (1 + 𝑑𝑠) are desirable. These pose corrections can be calculated by using
Cootes alignment algorithm, as per Appendix A.
Having adjusted the pose parameters, there remain residual adjustments which can
only be computed by deforming the shape of the model. Firstly, the adjustments dx
are calculated, in the local coordinate frame, that cause the points X to move by dX
when they are combined with some new pose parameters.
If the initial position of the model points in the image frame is given by Eq. [3.21], the
new residual adjustments dx, in the local coordinate frame are given from:

𝑀�𝑠(1 + 𝑑𝑠), (𝜃 + 𝑑𝜃)�[𝑥 + 𝑑𝑥] + (𝑋𝑐 + 𝑑𝑋𝑐) = (𝑋 + 𝑑𝑋) (3.27)

By doing some matrix operations on Eq. [3.27] it becomes:

𝑀�𝑠(1 + 𝑑𝑠), (𝜃 + 𝑑𝜃)�[𝑥 + 𝑑𝑥] = (𝑀(𝑠,𝜃)[𝑥] + 𝑑𝑋) − (𝑋𝑐 + 𝑑𝑋𝑐) (3.28)

and since,

𝑀−1(𝑠,𝜃)[] = 𝑀(𝑠−1,−𝜃)[] (3.29)

dx is equal to:

𝑑𝑥 = 𝑀�𝑠(1 + 𝑑𝑠)−1,−(𝜃 + 𝑑𝜃)�[𝑦] − 𝑥 (3.30)

where,

𝑦 = 𝑀(𝑠,𝜃)[𝑥] + 𝑑𝑋 − 𝑑𝑋𝑐 (3.31)

Although, Eq. [3.31] calculates the suggested movements of the points x in the local
coordinate system, these movements are not consistent with the shape model. Thus,
dx has to be transformed from its local system into the model parameter space and
the corrections are then notated with db.

Adding in Eq.[3.11] the shape corrections db, it becomes:

𝑥 + 𝑑𝑥 ≈ 𝑥̅ + 𝑃(𝑏 + 𝑑𝑏) (3.32)

and by subtracting 3.11 from 3.31 it gives:

𝑑𝑥 = 𝑃(𝑑𝑏) (3.33)

Solving for db, the final corrections for the shape model are given from:

25

𝑑𝑏 = 𝑃𝑇𝑑𝑥 (3.34)

since 𝑃𝑇 = 𝑃−1 due to orthogonality and unit length.

3.5.3 Updating the pose and shape parameters

The equations in the previous section were used to compute the corrections of the
pose and shape parameters between the current and updated – suggested shape.
The goal now is to apply them in an iterative scheme until the process converges:

𝑋𝑐 → 𝑋𝑐 + 𝑤𝑡𝑑𝑋𝑐 (3.35)

𝑌𝑐 → 𝑌𝑐 + 𝑤𝑡𝑑𝑌𝑐 (3.36)

𝜃 → 𝜃 + 𝑤𝜃𝑑𝜃 (3.37)

𝑠 → 𝑠(1 + 𝑤𝑠𝑑𝑠) (3.38)

𝑏 → 𝑏 + 𝑊𝑏𝑑𝑏 (3.39)

where 𝑤𝑡, 𝑤𝜃, 𝑤𝑠 are scalar weights and 𝑊𝑏 is a diagonal matrix of weights, one for
each mode. In this thesis, no weights are given and the weights for the alignment
algorithm in the searching part are set to identity.
One of the main advantages of the active shape models is that applying a model to
an image, it will deform until it converges, still though preserving a shape consistent
with the training set. But in order to do so, limits have to be applied to the values of
𝑏𝑘. Cootes in [28] suggests that a shape can be considered acceptable if the
Mahalanobis distance 𝐷𝑚 is less than a suitable constant, 𝐷𝑚𝑎𝑥, say 3. This limit
according to Cootes, satisfies almost all training examples when applied in Eq. [3.14].
As mentioned previously, b should lie within a hyperellipsoid about the origin. When
b is updated in every iteration, plausible shapes may occur (𝐷𝑚 > 𝐷𝑚𝑎𝑥) so then, the
point lies outside the ellipsoid. To correct this, b should be rescaled so that it lies
somewhere around an allowed ellipsoidal volume using the equation:

𝑏𝑘 → 𝑏𝑘 ∙ �
𝐷𝑚𝑎𝑥
𝐷𝑚

� (𝑘 = 1, … , 𝑡) (3.40)

3.6 Multi – Resolution Active Shape Models
Multi resolution active shape models are used to improve the efficiency and
robustness of the classical ASM algorithm. This method begins by initialy searching
the object in a coarse image and subsequently refining the location in a series of finer
resolution images. As a result, the algorithm tends to be much faster and less likely
to not converge.
For every training image, a Gaussian pyramid is built. The base image (level 0) is the
original image. Then, the image in the next level is created by applying firstly a 5x5
Gaussian filter for the reduction of noise and after that doing sub sampling to obtain
an image which has half the size of the original. Cootes in [30] suggests a filter that
results from a convolution of two linear filters with values 1-5-8-5-1. Common
methods used for resampling are bilinear or bicubic interpolation. Figure 3.15 shows
a resampling of a face image in four levels.

26

Figure 3.15: Image Pyramid with 4 levels. The current level is equal to half of the
image dimensions of the previous level (Milborrow, 2007).

At the training stage, the statistical model of the gray level appearance is created
along the normal to the points, for each of the image levels. Usually, the size of the
profile normal is the same for each of the levels, so it makes sense that in the coarse
image, information deduced is much more than the initial image (See Fig. [3.16]). In
the coarse image, the movements of the points into a better position are much larger
than the searching process in the initial image. Thus, reaching towards the search in
the initial image, the movements are much smaller and the convergence time much
less.

Figure 3.16: Gray level appearance for a landmark point at different levels of the
Gaussian pyramid (Self illustrated).

One of the issues that emerge during the search process is to decide when the
algorithm should converge for the existing level and move onto the next one. Cootes
in [30] suggests that this could be achieved by recording the number of times the
gray model has found its minimum (50%) within the central region of the profile.
When a sufficient number of points (e.g. > 90%) produce a best fit within this central
region (50%), then the algorithm is declared to have converged to that level (See
Fig.[3.17]). Then, the current model is projected into the next image level and runs to
converge again. When the convergence process is reached at the finest resolution,
the search stops (See Fig. [3.18]).

Level 0 (Initial image)

Level 1

Level 2 (Coarse Image)

27

Figure 3.17: (A) shows the profile sampled normal of the current pyramid level
together with the central 50% of the positions (B) Grey level model of the current
landmark point for the current pyramid level (Self illustrated).

Initial After 2 iterations

After 6 iterations After 8 iterations

Figure 3.18: Multi resolution ASM search on a face (T.F.Cootes & C.J.Taylor, 2004).

3.7 The Viola - Jones detector
The Viola Jones algorithm is the first object detection algorithm proposed in 2001 by
Paul Viola and Michael Jones [18]. Although it can be used (through training) to
detect several objects, it was primary used to solve the problem of face detection.

(A)

(B)

Central region

28

The method is based on simple features (see Fig. [3.19]) which are applied not on
the original image but on what is called derivative image. One of the main reasons of
using this method is that the feature based system operates much master than a
pixel – based system.
The Viola – Jones algorithm is restricted to three different kind of features. The first
one is a two - rectangle feature whose value is the difference between the sum of
pixels of two rectangular features. The regions have the same size and shape and
are horizontally or vertically adjacent. Then, a three – rectangle feature, computes
the sum within two outside rectangles, subtracted from the sum of the centre
rectangle. Last but not least, a four – rectangle feature calculates the difference
between the diagonal parts of the rectangles. According to the figure below, every
feature is enclosed within a 24x24 detector, which means that a very large set of
rectangles could be used, around 180,000.

(A) (B)

(C) (D)

Figure 3.19: Example rectangle features shown relative to the detecting window.
Two rectangle features are shown in ((A),(B)), (C) shows a three rectangle feature
and (D) a four rectangle feature (Viola & Jones, 2001).

Coming back to the definition of an integral image, any location 𝑥,𝑦 is equal to the
sum of the pixels above and to the left of 𝑥,𝑦 and its expressed mathematically as:

𝑖𝑖(𝑥,𝑦) = � 𝑖(𝑥′,𝑦′)
𝑥′≤𝑥,𝑦′≤𝑦

 (3.41)

where 𝑖𝑖(𝑥,𝑦) is the integral image and 𝑖(𝑥′,𝑦′) the original image.

The above formula could be explained with the following example: Consider four
rectangles A,B,C,D. The sum of pixels within rectangle D can be computed by using
all four points (Fig. [3.20]). The value that the integral image will have at location 1 is
the sum of pixels in rectangle A. Then the value at point 2 is equal to the sum of
pixels in rectangles A and B. Subsequently, the value at point 3 is equal to the sum of
pixels in A, B and C. Last but not least the value at point 4 is equal to the sum of
pixels in A, B, C and D.

29

Figure 3.20: The sum of the pixels within rectangle D is computed using all three
rectangles (A,B,C) (Viola & Jones, 2001).

The classifier is created by using a machine learning algorithm known as Adaptive
Boost algorithm (AdaBoost) that selects from a set of features and a training set of
positive and negative images, a small number of features used to train the classifier.
Originally, this AdaBoost algorithm was used increase or to boost the classification
performance of a weak learning algorithm. As mentioned previously, there are over
than 180,000 rectangle features applied within a sub window. Thus, although
calculating every feature is doable and quite effective, the same process for all
features is quite expensive. So the problem is how to find these features.
AdaBoost combines a collection of weak classifiers to create a stronger classifier. A
weak classifier in this algorithm is considered being a feature.

A weak classifier ℎ𝑗(𝑥) consists of a feature 𝑓𝑗, a threshold 𝜃𝑗and a parity 𝑝𝑗
indicating the direction of the inequality sign:

ℎ𝑗(𝑥) = �
1, 𝑖𝑓 𝑝𝑗𝑓𝑗 < 𝑝𝑗𝜃𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� (3.42)

with 𝑥 being a 24 × 24 pixel sub – window.

Figure 3.21: Schematic description of a detection cascade (Viola & Jones, 2001).

Furthermore Viola and Jones introduced an Attentional cascade which creates a
cascade of classifiers for increasing detection performance and reducing
computation time. It works by creating smaller classifiers which when applied, reject
most of the negative sub – windows and keeps all positive. The meaning of the word
“cascade” indicates that the process of detection has a tree search structure.

T T T

F F F

1 2 3 Further Processing

All Sub - windows

Reject Sub - window

1 2

3 4

A B

C D

30

A positive result from the first classifier kicks in the second classifier and so on. A
negative result would lead to rejection. The process is done by training classifiers
using the AdaBoost algorithm and then setting a threshold to minimize the false
negatives.
Stages in the cascade are created by training the classifiers using AdaBoost
algorithm and then setting the threshold to minimize false negatives (different
threshold in every scale). Generally by default, AdaBoost algorithm generates a low
rate error on the training data. The image below contains front faces of many
students during a school trip to Italy. Applying the Viola – Jones algorithm on the
image all of the faces that have a front view are detected.

Figure 3.22: Result of the Viola Jones algorithm on an image with multiple faces.
The faces detected are only frontal faces but not profile faces. That’s because the
classifier was trained from front face images (Personal picture library, School Trip
to Rome, Italy, 2005).

31

4
Software

This chapter provides a detailed description of the functions written for the purpose of
this master thesis. Within this framework, the implementation of the Viola / Jones
algorithm for providing initial position to the face model is discussed. The input
parameters, structures and classes are explained in Appendix A. The implementation
was written in C++, using Microsoft Visual C++ 2010 Express compiler and OpenCV
library. The source code was developed on a SonyVaio, VPC - Z1 model, i5 CPU at
2.40 GHz, 64 bit system with 4 GB RAM.

4.1 Functions definition

• CvScalar aligning_pair_of_shape (CvMat *mat1, CvMat *mat2, vector<double>

*weights, CvMat *aligned_data);

Description: This function aligns a face shape to another reference shape based on
the algorithm described in paragraph 3.3.2, graph 3.1.

Input:

mat1 : The coordinates of the first shape
mat2 : The coordinates of the second shape
weights : The weights for each one of the points

Output:

aligned_data : The aligned shape

• void alignTrainingData (vector <CvMat*> *training_data, CvMat

mean_alighned_shape, vector <CvMat> *aligned_set);

Description: This function aligns a number of training images.

32

Input:
training_data : A vector containing the landmark coordinates of all training
images.

Output:
mean_aligned_shape : The mean aligned shape or the Allowable Mean
Domain.
aligned_set : The aligned normalised shapes.

• void mean_shape (vector<CvMat*> *aligned_shapes, CvMat
*mean_aligned_shape);

Description: This function computes the mean shape from a set of aligned shapes.

Input:

aligned_shapes : A vector containing the landmark coordinates points of all
training images.

Output:

mean_aligned_shape : The mean shape.

• void centerText (char* s);

Description: This function centres and prints out some words, sentences or data
that the user will give as an input argument.

Input \ Output:

aligned_shapes : A string given as an input in the function, printed in the
system’s output window.

• void print_modes (CvMat *EVal, CvScalar *eigenval_sum, vector<double>

*modes);

Description: This function creates a print table with three columns and indicates the
most significant eigenvalues. First column contains the indices of the eigenvalues,
second column their values and last column the percentage from the total variation
each eigenvalue covers.

Input \ Output:

EVal : The eigenvalues of the covariance matrix derived from the aligned
data.
eigenval_sum : The sum of the eigenvalues.
modes : Number of modes of variation and the equivalent most significant
eigenvalues.

• void GetGrayValue (IplImage *Image, CvMat *interval_X, CvMat *interval_Y,

CvMat *Intensities);

Description: This function gets the intensities of the interpolated points on the profile
normal.

Input:

Image : The imported image

33

interval_X : The linear interval in x – direction across the normal
interval_Y : The linear interval in y – direction across the normal

Output:

Intensities : The gray intensities for each of the interpolated points

• void check_signed_zeros (CvMat *M);

Description: In C++ the zero value could be either positive or negative. Therefore, in
order to avoid having problems with some calculations, this function checks the
matrix for any negative zeros and sets them to positive zero.

Input / Output : The matrix to be checked. The function returns the same matrix but
with just positive zeros

• void get_gray_level_appearance (int nScales, vector<CvMat*> *matrices,

vector<string>*dir_images,CvScalar nsamples, PyramidLevel
*LabelPointsAppearance);

Description: This function builds the gray level appearance around each landmark
point and for each image level.

Input:

nScales : The number of image levels
matrices : The landmark coordinates of the non aligned training images
dir_images : The path where the images are kept.
nsamples : Number of interpolated points defined on the profile normal (only
for the one side of the profile normal).

Output:
LabelPointsAppearance : The gray level appearance of every landmark
point, in each image level, defined on the profile normal.

• void GetInitialPosition (IplImage *image, CvMat *meanASD, CvScalar

*InitialPosition, CvMat *InitialPos);

Description: This function initially runs the Viola/Jones algorithm to detect the face
in the search image and then tries to compute the initial pose parameters that will
place the model within the image.
Based on figure 4.1, two different cascades are used to approximate the initial
position. The first one is for frontal upright faces and the other for the left eye. The left
eye detector is used to shift the 𝑡𝑦 parameter downwards, because taking as
translation parameters the centre of the frontal detector, it would place the face
model quite high. Therefore, when attempting to bring the face model much closer to
where the search face is, the centre of the eye detector was used. Based on figure
4.1, the formulas derived for the approximation of the translation parameters are:

For the tx direction:

𝑡𝑥 = 𝑋2 − 𝑋1 (4.1)

the ty is equal too:

34

𝑡𝑦 = 𝑌1 +
(𝑌4 − 𝑌1)

2
+

(𝑌4′ − 𝑌1′)
2

 (4.2)

Figure 4.1: Mathematically extracting the initial position

The rotation 𝜽 was set to a fix value of 2o because most of the faces have
approximately the same orientation.

For the scaling factor s the following simplified algorithm was used:

Input: tx, ty, θ, coords_local_system, coords_image_system;
Output: scale (s)
Initialise: s = 30, scale increment = 0.01;

for (infinite loop)

coords_image_system = T(tx, ty, θ, s) * coords_local_system;
Get_X_values = coords_image_system(:,1); // (n x 1) dimensions
If (Get_X_values > X2 – 30) break;
s = s + scale_increment;

end

Algorithm 4.1: Scale definition

Based on figure 4.2 and algorithm 4.1, the face model is produced initially in a scale
of 30 and then increased by a 0.01 step till the x value of the shape gets larger then
X2 – 30pixels. The offset of the detector window inwards by 30 pixels was defined
empirically using different images. In most cases, the rectangle drawn outside the
face was approximately around 30 to 50 pixels away. Figure 4.2 shows the result of
the face model position and the initial pose parameters are:

1 2

3 4

-30 pixels
1΄ 2΄

3΄ 4΄

X

(0,0) X1, X4 X1’, X4’ X2 X2’, X3’

y4’

Y1, Y2

Y

Y4

y1’

35

TABLE 4.1
Approximate Initial Values

X0 Y0 Theta (θ) Scale (s)
296.0000 283.0000 2 56.4959

Figure 4.2: Initial position of the face model

Input:

Image : The searching image
meanASD : The mean shape of the Allowable Shape Domain
InitialPosition : The pose parameters used to take the model from its local
coordinate system to the image system

Output:
InitialPos : The initial position of the model in the image coordinate system

• void get_position (CvMat *model_shape, CvScalar *pose_shape_param, CvMat

*pos_coords);

Description: This function places the face model from its local normalised
coordinate system to the images system (𝑖, 𝑗).

Input:

model_shape : The face model in its local normalised coordinate system
pose_shape_param : The pose parameters (translation, rotation and scaling)

Output:

pos_coords : The model’s position in the image system

• CvMat get_model_parameters (CvMat *shape_coords, CvMat *adjustments,
CvScalar *pose_parameters, CvScalar *updated_pose_parameters, CvMat *P);

Description: This function computes the shape parameters 𝑏 = (𝑏1,𝑏2, … , 𝑏𝑡)𝑇 of the
first t modes of variation, as a result of deforming the face model during the update
of its points towards a better position in the image.

36

Input:
shape_coords : Coordinates of the face shape model in its local normalised
coordinate system
adjustments : The adjustments of the current model shape to a new updated
shape
pose_parameters : The pose parameters before the shape is updated
updated_pose_parameters : The new updated pose parameters after
approximating the current shape to a new updated shape
P : The first t eigenvectors

Output: The function returns the shape parameter vector

• void check_shape_parameters (CvMat *eigen_values, CvMat *b);

Description: This function checks if the shape parameters are within the Allowable
Shape Domain and if not, hard limits are applied to place the parameters on the
border of the domain.

Input:

Eigen_values : The total number of eigenvalues
b : The model parameter vector

Output:
b : Same matrix b is given as an output but corrected whenever is needed

• CvMat Apply_Model (IplImage *searching_image, int nScales, CvMat *x_current,
CvMat *model_position, PCAParam *Statistics, CvScalar *num_model_samples,
CvScalar *pose_parameters, int TImage_samples, PyramidLevel
*LabelPointsAppearance);

Description: This function applies the face model on the image and starts the
iteration process.

Input:

searching_image : The search image
nScales : number of image scales used
x_current : The coordinates of the face model within its local coordinate
system
model_position : The coordinates of the shape model in the image system
Statistics : It is a variable name of type PCAParam and it contains all the
statistical information of the aligned training data. That is the eigenvalues,
eigenvectors, mean aligned shape, number of modes, generated new shapes
num_model_samples : number of interpolated points on the profile normal of
the model points placed in the searching image (the number concerns only
one side of the profile)
pose_parameteres : Initial pose parameters used to place the face model in
the image system
TImage_Samples : Number of interpolated points on the sample profile
LabelPointsAppearance : The gray level appearance of the landmark points
in every image level

Output: A matrix containing the final coordinates of the face model, fitted as best as
possible on the face in the image

37

• void read_txt_face_parts (string path, vector<string> *parts_name,
vector<string> *parts, vector<int> *minVal, vector<int> *maxVal);

Description: This function reads the text file with the name face_parts.txt. The
figure below shows the content of this file:

Figure 4.3: text file of the parts of the face

The file name (face_parts.txt) as well as the format of the file (fixed length) must not
be altered. The reason for this is that the program classifies for every line the name
of the face part, the minimum and maximum index of that part and also specifies if it’s
a close contour of not. Nevertheless, it makes sense to use this function when the
range and index of landmark points per face part is known.
If a new data set of landmark points is given, where the user does not know which
range of points corresponds to which part of the face, then it is not recommended to
use this function. It is used to fix the normals to the face contour.

Input:

path : The path where the file face_parts.txt is located

Output:

parts_name : A vector containing the names of the face parts
parts : A vector containing the last column of the above text file which
determines if the face part is close or open contour
nsamples : Number of interpolated points taken on the profile normal
minVal : Vector containing the starting index value of each parts of the face
maxVal : Vector containing the end index value of each part of the face

• void plot_aligned_data (vector<CvMat*> *aligned_data, CvMat

*mean_aligned_shape);

Description: This function plots the aligned shapes and the mean shape on top of
them.

Input:

aligned_data : A vector containing the coordinates of the aligned shapes
mean_aligned_shape : The mean normalised aligned shape

• void plot_variations (vector<CvMat*> *variations);

Description: This function plots different shapes produced by varying the most
significant eigenvalues.

38

Input:
variations : A vector containing the landmark coordinates of the produced
shapes

• void plot_object (CvMat* variations, IplImage *search_image);

Description: This function plots the final face shape model on top of the search
image

Input:

variations : A matrix containing the final face model coordinates

Output:
 search_image : The searching image with the face model fitted on top

• void InvMatMahalanobis (CvMat *Covariance, CvMat *InvCov);

Description: This function finds the inverse of the covariance matrix used in the
computation of the Mahalanobis distance. Due to strong linearities between the
interpolated points on the profile normal of a point, the covariance matrix is not
positive definite and not full rank (at least most of the times). This could lead to
inaccurate results given by the Mahalanobis distance and a zero value can only
mean that the profile match is perfect.
This, according to some properties of the inversion of a matrix is not acceptable.
Thus, a method used to solve this problem is as follows:

1. Assume that A is a problematic covariance matrix. Perform a spectral
decomposition so that 𝐴 = 𝑄Λ𝑄𝑇 where Λ is a diagonal matrix containing the
eigenvalues

2. Set all the small or negative elements of the Λ matrix to a very small positive
number (in the project it was set to DBL_EPSILON) and create a new
diagonal matrix Λ′

3. Reconstruct A from 𝐴 = 𝑄Λ′QT

The new covariance matrix A is now full rank and positive definite.

Input:

Covariance : The covariance matrix of the current landmark point

Output:

InvCov : The inverted covariance matrix

• void Calc_Covar_mean_mat (vector<CvMat*> *obs_vector, int nsamples, CvMat

*Covariance, CvMat *mean);

Description: This function calculates the covariance matrix of every landmark point
and also the mean normalised gray level intensity of the point taken as an average
from all the training examples.

Input:

obs_vector : A vector of matrices containing the normalised intensities of a
landmark point throughout all images

39

nsamples : Number of training examples

Output:
Covariance : The covariance matrix of a point
mean : A column matrix containing the mean normalised intensity of a point

• void PCA (vector<CvMat*> *aligned_shapes, CvMat *aliged_mean_shape ,

PCAParam *ShapeStat);

Description: This function applies Principal Component Analysis on the aligned
training data.

Input:

aligned_shapes : A vector containing the aligned shapes
aligned_mean_shape : The mean aligned shape

Output:
ShapeStat : This is a variable of the class type PCAParam that contains all
the statistical information concerning the aligned training data. These are the
eigenvectors and eigenvalues of the covariance matrix derived from the
aligned data, mean aligned shape, number of modes, most significant
eigenvalues and new approximated shapes

• void convert_N2_to_N1 (CvMat *input_mat, CvMat *output_mat);

Description: Converts the coordinates layout from a 𝑛 × 2 order to a 2𝑛 × 1 form.

Input:

input_mat : The given 𝑛 × 2 matrix

Output:
output_mat : The resulting 2𝑛 × 1 matrix

• void convert_N1_to_N2 (CvMat *input_mat, CvMat *output_mat);

Description: Converts the coordinates layout from a 2𝑛 × 1 order to a 𝑛 × 2 form.

Input:

input_mat : The given 2𝑛 × 1 matrix

Output:
output_mat : The resulting 𝑛 × 2 matrix

• void convert (string input_file, CvMat *ma);

Description: This function converts the initial coordinates in text format to a CvMat
form.

Input:

input_file : A string specifying the path to the text file where the coordinates
of the current example image are saved.

Output:

40

ma : The coordinates of the training image converted into a CvMat form.

• void dist (CvMat *m, CvMat *output)

Description: This function computes the Euclidean distances of a point with respect
to all other points in the training image.

Input:

m : A matrix containing the landmark coordinates of the shape in a 𝑛 × 2 form

Output:
output : A matrix (𝑛 − 1) × 𝑛 dimensions, where each column corresponds to
the distances of a point to all other points

• double var_of_pts (CvMat *pts)

Description: This function computes the variance of every point using the formula in
Eq. [3.5].

Input:

pts : A row vector containing the distance of the current point to its next point
in all training images

Output: The variance of this distance over the training set

• void compute_Weights (vector <CvMat*> *training_data, vector <double>

*weights)

Description: This function computes the weights of each landmark point in the
training set using Eq. [3.5].

Input:

training_data : A vector containing the landmark coordinates for each one of
the training images

Output:
weights : A vector with the weights of each landmark point

• CvMat DiagMatrixWeights (CvMat *arg)

Description: This function creates a diagonal matrix (2 × 𝑛, 2 × 𝑛) with the diagonal
elements being the point weights.

Input:

arg : A matrix (𝑛 × 1) containing the weights of the points

Output: A weighted diagonal matrix

• void COG (vector<CvMat*> *matrices, vector<CvMat*> *cog)

Description: This function translates all the training images to their centre of gravity.
This is considered being the first part of the normalization process.

41

Input:
matrices : A vector containing the landmark coordinates for each one of the
training set

Output:
cog : A vector containing the translated landmark coordinates of each training
images

• void scaling (CvMat *InitialMeanShape, CvMat *MeanScaleShape)

Description: This function scales the reference shape so that the mean distance
between the centre (COG) of the shape and all other points is equal to √2 (second
step of the normalization).

Input:

InitialMeanShape : The reference translated shape to be normalised

Output:
MeanScaleShape : The scaled reference shape

• void GrayLevelAppearance::GetContourNormals (string type, CvMat

*Contour_Points, CvMat *ContourNormals)

Description: This function calculates the contour normals of the face shape. It is a
general function which could also be used for calculating the normals of close or
open contour objects, regardless from faces. The next function calls the current
described function for calculating the normals for each part of the face separately.

Input:

type : A given character which is either “c” for close contour or “o” for open
contour. The computational difference between these two is that in the close
contour case, the direction of the whisker of the first point is defined from the
difference of the second point and the previous last point of the contour. On
the other hand, in case of an open contour, the whisker direction is defined
only from the next point and the current point.

Output:

ContourNormals : A 𝑛 × 2 matrix containing the normals to the points in the
current shape

• void GrayLevelAppearance::GetContourNormalsFace (string path, CvMat

*Contour_Points, CvMat *ContourNormals)

Description: This function calculates the normals to the face’s contour. In is often
the case where the range of points corresponding to each part of the face is
unknown. The next point minus the previous point technique is not that “valid” for
example in cases where the normal on the first point of the eyebrow is calculated
using the last point of the outer face (compare results between figures [4.4a] and
[4.4b]).

42

Figure 4.4a: Point 2 whisker direction by
using points 1 and 3

Figure 4.4b: Point 2 whisker correction
by using the points 3 and 4

The above figures show how the direction of the whisker at point 2 is affected from
the previous and next point. As you can see, the right eyebrow is considered being a
close polygon, thus the next point of the current point 2 should be 3 and the previous
4. Taking this into account, the “corrected” direction of the whisker can be seen in
Fig. [4.4b].

Input:

path : The path directory to the text file face_parts.txt
Contour_Points : The landmark coordinates of the current image

Output:

ContourNormals : A 𝑛 × 2 matrix containing the normals of the face in the
current image

• void GrayLevelAppearance::linear_intervals (CvMat *Contour_Points, CvMat

*ContourNormals, CvMat *intervalx, CvMat *intervaly, CvScalar *samples)

Description: This function computes the linear intervals on the profile normal
(whisker) with a step equal to one pixel.

Input:
 Contour_Points : The landmark points in the current image

ContouNormals : The normals to the landmark points
samples : Numbers of samples taken on the whisker. The number of points
should involve only one direction of the whisker. Thus, the total number of
interpolated points will be equal to 2 × 𝑛 + 1

Output:
intervalx : The linear intervals in the x - direction
intervaly : The linear intervals in the y - direction

• void GrayLevelAppearance::GetDerivatives (IplImage *src_image, CvMat

*intervalx, CvMat *intervaly, CvMat *derivatives_norm, double samples)

Description: This function calculates the derivatives and normalised derivatives of
the gray level appearance around each landmark point based on chapter 3,
paragraph 3.4.3.

Input:

4
2

3

1 1

2

3

4

43

src_image : The input image from which the gray intensities of the profile
normals will be derived
intervalx : The linear intervals in the x - direction
intervaly : The linear intervals in the y - direction
samples : Numbers of samples taken on the whisker. The number of points
should involve only one direction of the whisker. Thus, the total number of
interpolated points will be equal to 2 × 𝑛 + 1

Output:
derivatives_norm : A (2 × 𝑛 + 1) × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑏𝑒𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 matrix containing
the normalised derivatives. Each column corresponds to one landmark point

• void CheckifImageGrayScale (vector <string> *training_images)

Description: This function converts the 24bit training images to 8bit gray scale
images in case they were not inserted in this form initially.

Input / Output:

training_images : A vector containing the names of the training images. The
output of this function is the convention of the RGB images into gray scale
images.

• double me17 (CvMat *LandmarkPoints, CvMat *searchPoints)

Description: This function computes the me17 error described in paragraph 5.1.

Input:

LandmarkPoints : A 𝑛 × 2 matrix containing the fixed landmark coordinates
of the face

searchPoints : A 𝑛 × 2 matrix containing the resulting coordinates of the face
model emanated either from the initial placement of the face model in the
image or after the convergence of the model.

Output:
The me17 value of the face fit (in pixels) between the fix landmark points and
the points coming from the face detector or the ASM search result.

• vector<string> GetPyramidImages (int nScales, vector<string> *TrainingImages)

Description: This function produces the image pyramid of the training set.

Input:

nScales : Number of pyramid scales to be created
searchPoints : A vector containing pointers to the training images in their
initial dimensions.

Output: A vector containing pointers to the pyramid images.

44

5
Results

This chapter presents the experimental part of this master thesis. It starts by
introducing the method used to measure the quality of the model fit in the image,
known as me17. Then, the initial placement of a face model on a set of images
selected randomly from the MUCT dataset, applying the Viola / Jones face detector
and the quality of fit is seen. Subsequently, using Cootes online data set (training set)
provided in sub section 5.4.1, the process of alignment, capturing the statistics of the
aligned data and applying the face model on a coarse search image is explained.
Moreover, a comparison will be shown of the different me17 fits using face models
derived from unmodified and modified raining images (adding Gaussian noise and
dislocating the landmark points).

5.1 The me17 measure
Christinacce in [4] introduced the me172 measurement, designating the quality of fit
of a face model in an image, described by the following formulation:

𝑚𝑒 =
1
𝑛𝑠
�𝑑𝑖

𝑖=𝑛

𝑖=1

 (5.1)

where:

𝑑𝑖 are the point to point Euclidian distances,
s is the distance between the eye pupils and
n is the number of landmark points used to describe this error. The result is in pixel
units.

2 The reason it is given the name me17 is because 17 points are used to estimate the overall fit.

45

Keep in mind that this measurement is ambiguous due to the fact that it covers some
of the inner part and none of the outer part of the face. This, in some cases could
lead to a somehow unreliable result, because the inner part might not have
converged as well as the outer part and vice versa. Figure [5.1] illustrates the relation
between the me17 points of the face model respectively to the equivalent ones in the
face image.

Figure 5.1: The symbol “ ” indicates true location and “x” predicted location

Figure [5.2a] shows the position of the 17 points in the image and figure [5.2b] the
index of these points.

Figure 5.2a: The me17 Landmarks position
[Milborrow]

Figure 5.2b: The me17
Landmark index [BioID set]

X

X X X

X X
X

X X
X

X

X X

X
X X

X

s

di

46

5.2 Face Configuration of the MUCT dataset
The face images, provided by the online database, were captured from five different
cameras with a configuration shown below:

Figure 5.3: The five cameras and their position with respect to the face

The utilization of the training data emanated only from camera a. Specifically,
cameras b and c were not good enough to be used due to obscured landmarks, thus
they were excluded. The images have a resolution of 640 x 480. As you can see from
the above figure, camera was not located to the left since it could be approximated
by mirroring the image from the right. In total, 76 landmark points where measured
manually in each image from a human landmarker and then checked from a third
person. The image filenames have the form “i000qa-fn.jpg” where:

• i is a prefix in all images
• 000 is the ID increment
• q is the lighting set (lookup table in http://www.milbo.org/muct/muct-

details.html)
• a is the camera view (see Fig. [5.1])
• f stands for female and m for male
• n is for no glasses and g for glasses

For example, image “i007qa-fn.jpg” is the 7th image in the dataset, with lighting set q,
captured from position a, gender female and wears no glasses.
For more technical information concerning the lighting configuration and the
advantages of this dataset over some other datasets refer to [21].

5.3 Face detection on MUCT images
The Viola – Jones algorithm is robust enough to detect faces but it is also important
to see how it could be used to approximate the position of a face model in the search
image. This was established and explained in the previous chapter and here some
experimental results are provided.
Six upright frontal faces where chosen randomly from the MUCT database, each one
with different external characteristics. These different characteristics could be
distinguished between people with or without hair, wearing glasses or not, having a
beard or not etc. In Fig. [5.4] the detector has situated the face model in a very good
initial position.
All parts of the face model are placed very close to the edges of the object. On the
other hand, the position of the eyebrow, eye and nose in Fig. [5.5] are placed quite
close to the face image, but the outline of the face is further away from it.

http://www.milbo.org/muct/muct-details.html
http://www.milbo.org/muct/muct-details.html

47

Figure 5.4 Figure 5.5 Figure 5.6

In figure [5.6] the face model is been placed quite well, similar to figure [5.4].
Nevertheless, using this image as a search image could result a bad fit because of
the constant gray intensities around the beard. However, training the gray level
appearance using images with similar complexities and beard presence, the face
model could most probably converge. Despite this comment, the initial approximation
is very good.
Continuing with Fig. [5.7], the face model is well placed on the outer part of the face,
nose and lips but the eyebrows and eyes are situated further down from where they
should be. Regardless of this problem, the particular face couldn’t be used as a
search image since the gray level appearance of the training faces does not contain
any headscarf information (or very limited) and secondly because the area around
the face has a constant intensity, hence no better positions could be estimated.
In figure [5.8] the face detector works quite well but the eye detector fails to provide a
good initial position of the face model. As a result, the eye detector recognises the
mouth part which automatically shifts the face model further down. Figure [5.9]
illustrates this.
Last but not least, in Fig. [5.10] the face model is placed quite well in most parts
except the eye part.
However, that wouldn’t be a problem because the ASM method runs in a
multiresolution approach which means that for a suitable profile length the eye part
could be shifted to a better position.

Figure 5.7 Figure 5.8 Figure 5.9

i449wa-fn

i010qe-mn

i017re-mg i017re-mg

i007qa-fn i016se-mn

48

Figure 5.10

The chart below shows the me17 measurement for all six images. It is clear that the
best initial position is located in the third image with a me17 of 0.084. Keep in mind
that the me17 result in all cases is affected from the position of the eye pupils. This
means that if the rest of the model is placed quite well but the eye pupils are far away
from the correct position, then the me17 measure will give an ambiguous result.
Taking a close look at the me17 result of the i017re-mg image, the error is quite high
due to large offset the eyes of the face model have from the real eyes position. At the
same time, having this large offset in the inner part of the face, the outer part fit is
quite good.

Figure 5.11: The me17 fit for initial face model position

On the other hand, the me17 fit measure is quite good in the i016se-mn image due to
the eye position, but the external part does not fit as well.
Overall, in the first three images, the error is kept in low levels because of the very
good eye position and at the same time the outer part is not that good. On the other
hand, the error is large in the rest of the images due to bad eye position but the outer
part is good. The table below gives the initial pose parameters and the me17 quality
fit for each of the aforementioned images.

0

0,05

0,1

0,15

0,2

0,25

0,3

i007qa-fn i016se-mn i010qe-mn i449wa-fn i017re-mg i425wa-mn

The me17 fit for Initial Position

me17

i425wa-mn

49

Table 5.1
Initial Pose Parameters and the me17 fit

Images
Initial Pose Parameters

me17 fit Xt (pix) Yt (pix) theta (deg) scale

i007qa-fn 285 440 2 45.3478 0.0895

i016se-mn 246 398 2 52.0467 0.0869

i010qe-mn 221 410 2 46.3776 0.0840

i449wa-fn 323 468 2 40.1987 0.1733

i017re-mg 283 392 2 47.9274 0.2756

i425wa-mn 314 408 2 43.2882 0.1442

5.4 Applying the Active Shape Model on Cootes data

5.4.1 The training data

Cootes online data set contains 24 images in different moods with 68 landmark
points measured per image. The dimension of the images is 640x480 as shown
below.

50

Figure 5.12: Training set containing 24 images

5.4.2 Aligning the training set

First part of the process involves the alignment of the training faces. Figure [5.13a]
shows all the contour faces misaligned and then their alignment in figure [5.13b]. The
algorithm used for the alignment process is referred in graph 3.1.
Figure [5.13a] shows a “cloud” of contour faces coming directly from the training set
and represented with a green line. Figure [5.13b] on the other hand illustrates the
aligned faces, with a red line on top representing the mean face. The alignment
procedure converged after 3 iterations.

51

Figure 5.13a: The training set before
alignment

Figure 5.13b: The training set after the
alignment

5.4.3 Capturing the statistics of the aligned data

After the alignment, PCA was applied on the aligned faces and the results are given
in the table below. For the calculation of the covariance matrix, corresponding
eigenvectors and eigenvalues the algorithm in Appendix C was used. The reason for
this is because the number of training samples is less than the coordinates
(2*68points = 136points > 24 images).
Table 5.2 shows the most significant eigenvectors listed in descending order,
covering 97% of the total variation of the training set. From all seven eigenvalues,
only the first three express the greater part of the variation and the rest a significantly
smaller part.

TABLE 5.2
Most significant Eigenvalues of the Covariance matrix derived

from Cootes training set

Eigenvalue index Eigenvalue Total variance (%)
𝝀𝟏 0.4304 65.01
𝝀𝟐 0.0918 13.86
𝝀𝟑 0.0507 7.66
𝝀𝟒 0.0326 4.92
𝝀𝟓 0.0232 3.51
𝝀𝟔 0.0124 1.87
𝝀𝟕 0.0042 0.63

Figure [5.14] shows the model parameters, defined as �𝜆𝑖 respectively to their x
square distribution values. It is clear that most of the variations are indicated in the
first 7 model parameters and the rest are concentrated very close to each other.

52

Figure 5.14: The chi square distribution of the model parameters

Figure [5.15] shows the first two principal components 𝑏1, 𝑏2 together with the aligned
training examples, each represented with a single point. All these points lie, in what
was defined in the previous chapter, as Allowable Shape Domain and the centre of
this domain is the origin of the two most significant principal components. What is
shown is that these two parameters could be considered being linearly independent
due to the way the points are distributed within the domain. Dependency between
these two parameters could result the generation of “illegal” shapes.

Figure 5.15: Plotting b1 against b2

New shapes produced from Eq. [3.12] and [3.13] are shown below:

53

−𝟑√𝟎.𝟒𝟑𝟎𝟒 0 𝟑√𝟎.𝟒𝟑𝟎𝟒

−𝟑√𝟎.𝟎𝟗𝟏𝟖 0 𝟑√𝟎.𝟎𝟗𝟏𝟖

−𝟑√𝟎.𝟎𝟓𝟎𝟕 0 𝟑√𝟎.𝟎𝟓𝟎𝟕

−𝟑√𝟎.𝟎𝟑𝟐𝟔 0 𝟑√𝟎.𝟎𝟑𝟐𝟔

54

−𝟑√𝟎.𝟎𝟐𝟑𝟐 0 𝟑√𝟎.𝟎𝟐𝟑𝟐

−𝟑√𝟎.𝟎𝟏𝟐𝟒 0 𝟑√𝟎.𝟎𝟏𝟐𝟒

−𝟑√𝟎.𝟎𝟎𝟒𝟐 0 𝟑√𝟎.𝟎𝟎𝟒𝟐

Figure 5.16: New face models build by using the most significan eigenvalues

For each variation mode, three different shapes were created with a maximum
variability of ±𝜆𝑖. For the first mode, the generated shapes have a side rotation,
capturing the variability of faces with a side view. The second mode of variation
creates an elongated face, stretched outwards from its upper and lower part. It is
clear that this mode captures the variation effecting the outer part of the face. Third
and fourth modes vary in the mouth part, affecting the opening and closing of the
mouth. The fifth mode stretches the mouth from both sides as it tries to create a flat
smile. The sixth mode creates small movements of the jaw from left to right direction.
Last but not least, the seventh mode effects the size of the lips by a small amount.

55

5.4.4 Detection and Searching

Last step of the procedure involves placing the derived face model from its local
coordinate system to the image’s system in order to start the iteration process
towards face convergence. The images on the left column (below) show the result of
the Viola – Jones face detector together with the initial placement of the face model.
The results of the Active Shape Model approach are seen on the corresponding right
column.

Image 1a Image 1b

Image 2a Image 2b

Image 3a Image 3b

Image 4a Image 4b

56

Image 5a Image 5b

Figure 5.17: The images on the left show the initial position of the face model using
the Viola Jones algorithm and on the right, the equivalent model fit.

The input parameters required for the initialization searching process, were defined
through testing and the values given are: model profile = 5; search profile = 9; 97%
maximum described variation; 2 image scales. Theoretically, the initial position of the
face model in all images is good enough not to require many iterations. Because 2
pyramid levels are used, when the model converges from the coarse image it should
then be rescaled to fit the face in the initial image. The model would change image
scale when 95% of all points lie within 50% around their central position. In case the
model has not converged, a number of 400 iterations are set in the coarse level. The
size of the Allowable Shape Domain, 𝐷𝑚𝑎𝑥 was set to 0.8.
The results for the first and second image are quite good, regarding the inner part of
the face. The outer part showed a lot of fluctuation and couldn’t remain steady. What
is intriguing is the fact that after numerous iterations the inner part wouldn’t change,
though the position of the points in the outer part fluctuated. Therefore, in order to
check if there is enough room for improvements, all 400 iterations where executed.
For the second image, the model fit would improve until 180 iterations but after that it
would start deviating rather than improving. Moreover, images 3, 4 and 5 have
visually the best fit from the rest although the me17 contradicts this view.
According to table 5.3, images 2 and 4 have the best fit, though this could be visually
true for image 4 but not for image 2. Furthermore, while the inner part of images 1
and 2 has converged quite well, the outer part hasn’t, though the me17 results are
quite good. Generally, if no hard limits where applied on the size of the Allowable
shape domain, the movement of the points would be very ambiguous and the degree
of freedoms quite high. For image 3, the size of the domain had to be changed
because with the value of 0.8 the model would fail to converge. Given the value 1,
the model would successfully fit.
It is still under thoughts why would that specific image need a larger domain for the
updated shapes while all other images, coming from the same dataset converged
using the same domain size.

57

TABLE 5.3
ASM Results

Image
Pose Parameters

Iterations
cοarse image Dmax

Initial
me17

Final
me17 Xt Yt

Theta
(θ)

Scale
(s)

1 391 230 2 71.9064 400 0.8 0.1350 0.0317

2 423 223 2 68.8257 180 0.8 0.1590 0.0251

3 395 256 2 69.2854 150 1 0.0893 0.0354

4 390 257 2 69.8559 200 0.8 0.1293 0.0196

5 366 194 2 62.1450 200 0.8 0.1471 0.0442

The graph below shows the me17 fit of the initial face drawn with a blue line and the
me17 fit after convergence (red line). The blue line, as it is expected, has large
values and also a large variation between images. After convergence, all me17 fits
are more or less on the same level and obviously have smaller values compared to
the initial results.

Figure 5.18

5.5 Adding noise during training
Data provided by Cootes contained training images exempted from noise and other
disturbances as well as landmark points measured with great accuracy. It would be
interesting to see how a model could be built and applied on a face image using
perturbed images or data. This means adding noise to the training images or
modifying the position of the landmark points by a small random number. As a result,
the gray level appearance around each landmark point and also the variability of the
data will be disturbed. Both cases will be examined.
The noise added to the training images was Gaussian noise with a mean value of
zero and a variance of 0.0008. Experimenting with larger variance started to create
images with no more strong edges and therefore pointless to try and build the gray
level appearance around each landmark point. The fitting results can be seen from
table 5.4. It is clear there is a large difference from the results in table 5.3.

0
0,02
0,04
0,06
0,08
0,1

0,12
0,14
0,16
0,18

1 2 3 4 5

m
e1

7

Comparison of the initial and final me17

Initial me17

Final me17

58

First of all, the number of iterations in both cases is the same except in the first and
last image. Secondly, the size of the allowable shape domain had to be modified for
every image, otherwise the process would fail.
The explanation for this is still under thought so no clear answer can be given. What
is interesting to mention is that these Dmax values defined experimentally are specific.
Increasing or decreasing the size of the predefined domain will lead to a failed search
process. The ideal situation would be to have a fixed size of the shape domain and
achieve a good result for every image based on this fixed size. The initial thought
was to use the same number of iterations and domain sizes as mentioned in table
5.3 to compare the fit quality of a model trained from the initial images and then from
the noisy ones.

TABLE 5.4
ASM Results using Noisy Training Images

Image Iterations course
image Dmax Final me17

1 148 0.8 0.0202

2 180 0.5 0.0384

3 150 1.8 0.0508

4 200 1.5 0.0556

5 400 0.8 0.0498

The second modification was to maintain the initial training images unchanged and
simply adjust the displacement of the landmark points so as to increase the variability
of the face models. This was achieved by adding a random number to the existing
landmark coordinates, within a range of 0-1. Table 5.5 gives the searching results for
each image. In this case the number of iterations and domain sizes remain the same
as in table 5.3.

TABLE 5.5
ASM Results from randomly modified Landmark points

Image Iterations course
image Dmax Final me17

1 400 0.8 0.0647

2 180 0.8 0.3845

3 150 1 0.0323

4 200 0.8 0.0233

5 200 0.8 0.0699

The graph below illustrates the quality of fit between the initial results shown in table
5.2 and the modified results from tables 5.3 and 5.4. As it can be seen, training
images forced by Gaussian noise provide results with a quality of fit very similar to
the unmodified data.

59

Unfortunately, the number of iterations and also the size of the allowable shape
domain had to be changed in the case of the Gaussian noise, otherwise the search
would fail. Therefore, the comparison between these two approaches wouldn’t work
using the same property values. The reason why the noisy training images would
force the allowable shape domain to fluctuate that much, is still under thoughts. Even
increasing the maximum number of iterations and maintaining fixed the size of the
domain, wouldn’t make any difference. Consequently, the convergence of a face
model, built from noisy images is pretty much dependant on the size of the domain
rather than the quality of the gray level appearance around each landmark point.
The me17 measurement of a face model, created firstly from the initial images and
then by modified landmark points, is very close for images 1 and 5, almost coinciding
for images 3 and 4 and very large for image 2. It is clear that even changing the
displacement of the landmark points by a random number, the results are
comparable, although in image 2 these small changes caused a steep change of the
quality of the fit.

Figure 5.19

0
0,05
0,1

0,15
0,2

0,25
0,3

0,35
0,4

0,45

1 2 3 4 5

`

Quality of model fit using training images with noise, modified
landmark points and unmodified (initial) data

Unmodified data

Gaussian Noise

Modified Landmark Point

60

6
Discussions and Conclusions

6.1 Discussions
This master thesis involved detecting faces and fitting a trained face model on the
detected face using a multiresolution Active Shape Model approach. As described
previously, although the technique works quite well, improvements and proposals
could be made, such as:

• Automatic labelling of faces

Creating a fully automated system to measure corresponding landmark points from a
set of training images without failures, is still under development. Large
improvements have been made towards this direction but still nothing significant. As
the number of training images increase, measuring manually landmark points would
be very time consuming and off course not accurate enough. It is important, points
measured on the face to be placed precisely. Misplacing a landmark point may
generate a face model which is distorted at that specific position. If there is noise in
the images, the automatic system might fail to accurate place the landmark point.
According to Cootes in [26], known points found could be set to one and the rest to
zero. It is still possible to build reliable face models even if only a very small number
of points is missing from the training set.

• Choosing correct training examples

For the comparison of landmark points, it is essential for all training faces to be
accurately placed within their image. Typically, data alignment is important for
bringing the trained shapes to a common coordinate system, so as to achieve a
similar normalised size. In addition, the chosen training images should have similar
intensities around the facial features. Moreover, the example images used for
constructing the face model should contain the variability of the search face.

61

For example, frontal upright faces that look directly at the camera don’t have much
variation, thus the training faces should be similar. If there are training faces with side
variation or variation of some facial parts, then they should be truncated because
only a very small part of the total variation would be explained. On the other hand,
using a large number of training images expressing the same variation is not
reasonable enough, therefore it’s better to train a model covering any expected
variation.

• Using 24 bit images

The ASM method was applied on 8 bit training images. Nevertheless, the same
process could be realized on 24bit images too. In this case, the gray scale
appearance of every landmark point would be expressed by a (3 × 𝑛) × 1 vector,
where 𝑛 is equal to the number of interpolated points on the profile normal. For every
channel, the gray level intensity is extracted and placed into the vector. Therefore,
the profile matching is then to be done using all 3 channels simultaneously. Main
disadvantage of this approach is that it is computationally more expensive, especially
when a multiresolution ASM is used.

• Having a small number of training examples

It is often the case where there are fewer training examples 𝑁 than landmark
coordinates 2𝑛. In this situation no more than 𝑁 − 1 degrees of freedom in the model
are allowed and the eigenvectors of the 2𝑛 × 2𝑛 covariance matrix can be calculated
from a smaller 𝑁 × 𝑁 covariance matrix. Thus, using the method subject to Appendix
C, the eigenvectors of the equivalent nonzero eigenvalues can be computed.

• Using 2D profiles

Figure 6.1: (left image) 1D profiles created
through the computation of the normals to the
shape boundary and the 2D profiles (right
image) defined using a square region around
each landmark point (Seshadri & Savvides,
2009)

According to Milborrow in [23], using 2D profiles rather than 1D could increase the
quality of fit as well as the convergence time. Matching 2D patches could rise the
probability of minimizing a given energy function rather than a simple Mahalanobis
distance (see Fig. [6.1]).

• Updating the Pose and Model Parameters

Updating pose and model parameters is an important factor for the convergence
method, although significant improvements have been made.

62

Choosing ideal weights for each of the landmark points may increase the confidence
of their displacement towards a better position. Various scientists have introduced
and developed their own weight method to check the displacement confidence of the
points. Within this thesis, all weights except the ones calculated for the alignment of
the training faces, where set to unity.
The experimental results could probably be improved if the confident of each point
was known. Specifically, images where the face model failed to provide a good
outline fit, could be improved using weights.
Moreover, the limit applied on the model parameters to maintain model’s shape,
proposed by Cootes in [25] is:

𝑏 → 𝑏 +𝑊𝑏𝑑𝑏 − 𝑘𝑏𝑊𝑏𝑏 (0 < 𝑘𝑏 < 1) (6.1)

This would give more weight to shapes that are closer to the mean shape and less to
the ones which are more deformed. On the other hand, applying these limits might
not provide good solution between the face image and the model face. Thus, in this
case it is preferable to use the fix limits introduced in Eq. [3.40]. Milborrow in [23]
applies the fix limit approach too. Cootes in [32] suggests that after updating the
model shape, weights should be given as to the quality of the update for each point.
If a point is not moving in the correct direction, the weight should be decreased else
otherwise. The formula is as follows:

𝑤𝑖 =
1

2 + |𝑑𝑋𝑖|2
 (6.2)

where |𝑑𝑋𝑖| is the adjustment correction in both x and y direction, of the point i.

• Appling PCA on gray level intensities to find the desired movements

This method involves modelling the gray level appearance around each landmark
point using Principal Component Analysis and determines the desire movements
through statistical comparison. According to Cootes in [27], this approach leads to
more reliably and accurate search results. Furthermore, Kroon in [13] believes that
this method works better on RGB images.

• Real time Active Shape Models

Active Shape Models have proved to work well in image segmentation, feature point
location and extracting objects contours. Nevertheless, applying this method for face
detection and recognition, using a video sequence is a big challenge. In this case,
the face model would have to fit the face in real time. Thus, when the face is moving,
the model would adapt to the face in real time. It would also be interesting to see how
the ASM could be applied on a picture or a video sequence capturing multiple faces.

• Comparison with the Active Contour Models

Active Shape Model is a method very similar to the Active Contour Models (Snakes).
The Active Contour Model approach is based on an energy minimized spline function
guided by external and image forces (constraints) pulling it towards image features.
In both cases, the results are comparable even for noisy and cluttered objects. The
difference occurs in the training phase where the Active Contour Models are much
easier to train rather than the ASM, but the model in the Active Contour case is not
that specific and usually implausible shapes may be generated for complex objects
[25].

63

Last but not least, the ASM method is more robust to noise, clutter and occlusions,
because the variability is better controlled and the results remain within the
predefined domain limits.

6.2 Conclusions
Active Shape Models is one of the simplest methods used to detect objects, in this
case, facial features. Nevertheless, it is an essential requirement to have good initial
values for the pose parameters (model parameters are set to zero). If the method
fails to converge it is most likely that the placement of the face model in the image is
not good enough. Therefore, the Viola/ Jones face detector is used to initially detect
the face and subsequently place the face model as good as possible on the face
image. Experiments made on a set of different facial upright frontal images, provided
by the MUCT dataset, showed that the face detector and also the initial placement of
the face model worked quite well in most cases. Failures, in the sense of bad model
placement, occurred when a person was wearing glasses. On the other hand, well
placed models could still fail to converge, on images where the gray intensities
around the faces was constant, for example the existence of beard where the edges
are not visible. The quality of the initial position of the model and also its final
convergence was measured by the me17 method.
In its initial form, the Active Shape Model method would run directly on the original
image provided that profile normal lengths are given. In this thesis work this was
extended, applying a multi resolution approach using two pyramid image levels with
an objective to achieve a more robust model fit and convergence within the coarse
image.
The reliability of the correction vectors, is strongly dependant from the position where
the Mahalanobis distance is minimum within the displacement positions. The
Mahalanobis distance is very sensitive when it comes to the computation of the
inverse covariance matrix.
As already explained, strong linearities between the interpolated points could result a
covariance matrix which is not invertible (not positive definite and not full rank).
That is why a modified covariance matrix was calculated (through spectral
decomposition), which fulfils the inversion properties and helps to compute the
correct point displacement.
Computing the profile normal is also very critical. Representing a face contour via line
segments connected by landmark points and calculating the profile normal at each
point using the next – previous point relationship, may not accurately represent the
definition of a normal at some point. Therefore, knowing the number of landmark
points per face part, the profile normals would be calculated independently for each
part.
Moving on with the gray level appearance around each landmark point, the training
images should have similar intensities values around each facial area. This is
essential because the profile matching should be done between similar intensities.
What still remains ambiguous is the ideal size of the Allowable Shape Domain.
Results showed that the size of the domain is very sensitive and if too small or too
large the method will fail. For a predefined domain size, all Cootes images used for
searching (except for one) converge. Still it is hard to believe, that although the same
data set was used, this particular image would fail. Have in mind that even increasing
the number of iterations the result wouldn’t change.
Last but not least, adding noise to the training images and increasing variability of the
landmark points affected the final result. It became clear that significant changes
occurred after adding Gaussian noise to the images. For each one of the search
images the domain size had to change otherwise the method would fail.

64

On the other hand, changing the displacement of the landmark points by a small
random value didn’t result in any major changes.

65

Literature

[1] Alejandro F.Frangi, Joes J.Staal, Bart M., Max.A Viergever, Active Shape
Models Segmentation With Optimal Features, IEEE Transactions on medical
Imaging, Vol.21, No.8, August 2002.

[2] Amy Ross, Procrustes Analysis, Department of Computer Science and

Engineering, University of South California, report.

[3] F.L.Bookstein, Morphometric Tools for Landmark Data, Cambridge University
Press, London/New York, 1991.

[4] David Cristinacce, Automatic Detection of Facial Features in Gray Scale

Images, University of Manchester, Faculty of Medicine, Dentistry, Nursing and
Pharmacy, Ph.D thesis, 2004.

[5] E.H.Adelson, C.H.Anderson, J.R.Bergen, P.J.Burt, J.M.Ogden, Pyramid

methods in image processing, RCA Engineer, 1984.

[6] Ghassan Hamarneh, Rafeef Abu – Gharbieh, Tomas Gustavsson, Active
Shape Models – Part I: Modeling Shape and Gray Variations, Department of
Signals and Systems, Imaging and Image Analysis Group, Chalmers University
of Technology, Göteborg, Swedem. Proceedings on the Swedish Symposium
on Image Analysis, SSAB 1998.

[7] Ghassan Hamarneh, Rafeef Abu – Gharbieh, Tomas Gustavsson, Active

Shape Models – Part II: Image Search and Classification, Department of
Signals and Systems, Imaging and Image Analysis Group, Chalmers University
of Technology, Göteborg, Swedem. Proceedings on the Swedish Symposium
on Image Analysis, SSAB 1998.

[8] Gary Bradski and Andrian Kaehler, Learning OpenCV, Computer Vision with

the OpenCV Library, September 2008.

[9] Gordon Simons and Yi – Ching Yao, Approximating the inverse of a symmetric
positive definite matrix, Department of Statistics, University of North Carolina
Chapel Hill and Institute of Statistical Science, Academia Sinica, Taipei,
Taiwan.

[10] Jung – Bae Kim, Seok – Cheol and Ji – Yeon Kim, Fast Detection of Multi –

View Face and Eye based on Cascaded Classifier, Computing Lab, Samsung
Advanced Institute of Technology, Korea.

[11] James E.Gentle, Numerical Linear Algebra for Applications in Statistics,

Springer.

[12] Keshav Seshadri, Marios Savvides, Robust Active Shape Model for
Landmarking Frontal Faces, Department of Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, June 2009.

[13] Dr. Kroon, University of Twente, Applying the Active Shape Model approach on

hand images, MatLab Code, February 2010. Link:
http://www.mathworks.com/matlabcentral/fileexchange/26706-active-shape-
model-asm-and-active-appearance-model-aam

http://www.mathworks.com/matlabcentral/fileexchange/26706-active-shape-model-asm-and-active-appearance-model-aam
http://www.mathworks.com/matlabcentral/fileexchange/26706-active-shape-model-asm-and-active-appearance-model-aam

66

[14] Juan Soulié, C++ Language Tutorial, released in June 2007. Available online
at: http://www.cplusplus.com/doc/tutorial/

[15] Mikkel B. Stegmann and David Delgado Gomez, A Brief Introduction to
Statistical Shape Analysis, Informatics and Mathematical Modelling, Technical
University of Denmark, 2002.

[16] M.I.Jordan, An Introduction to Linear Algebra in Parallel Distributed Processing,

Formal Analysis, Chapter 9.

[17] Min.Wang, Yi ling.Wen, Li.Fang, Wei ping.Sun, An Improved Active Shape
Model Application on Facial Feature Localization, The School of Information
and Control Engineering, Xi’an University of Architecture and Technology.

[18] Paul Viola and Michael Jones, Rapid Object Detection using a Boosted

Cascade of Simple Features, CVPR 2001.

[19] Rainier Lienhart and Jochen Maydt, An extended Set of Haar – like Features
for Rapid Object Detection, Intel Labs, Intel Corporation, Santa Clara,
California, USA.

[20] Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer

Vision, Cambridge University Press, March 2004.

[21] Stephen Milborrow, John Morkel, Fred Nicolls, The MUCT Landmarked Face
Database, University of Cape Town.

[22] Stephen Milborrow, Locating Facial Features with Active Shape Models, Master

Thesis, University of Cape Town, November 2007.

[23] Stephen Milborrow and Fred Nicolls, Locating Facial Features with an
Extended Active Shape Model, Department of Electrical Engineering, University
of Cape Town, South Africa.

[24] Rasmus Elsborg Madsen, Lars Kai Hainsen and Ole Winther, Singluar Value

Decomposition and Principal Component Analysis, Lecture notes.

[25] T.F.Cootes, C.J.Taylor, D.H.Cooper, J.Graham, Active Shape Models - Their
Training and Application, Computer Vision and Image Understanding, Vol. 61,
No.1 January, pp. 38 - 59, 1995.

[26] T.F.Cootes, C.J.Taylor, D.H.Cooper, J.Graham, Training Models of Shape from

Sets of Examples, Department of Medical Biophysics, University of
Manchester.

[27] T.F.Cootes, C.J.Taylor, Active Shape Model Search using Local Grey – Level

Models: A Quantitative Evaluation, Department of Medical Biophysics,
University of Manchester.

[28] T.F.Cootes, C.J. Taylor, Statistical Models of Appearance for Computer Vision,

Imaging Science and Biomedical Engineering, University of Manchester, March
2004.

[29] T.F.Cootes, C.J.Taylor, Active Shape Models – ‘Smart Snakes’, Department of

Medical Biophysics, University of Manchester.

http://www.cplusplus.com/doc/tutorial/

67

[30] T.F.Cootes, C.J.Taylor, A.Lanitis, Active Shape Models: Evaluation of a Multi –
Resolution Method for Improving Image Search, Department of Medical
Biophysics, University of Manchester.

[31] T.F.Cootes, A.Hill, C.J.Taylor, Active Shape Models and the Shape

Approximation Problem, Department of Medical Biophysics, University of
Manchester.

[32] T.F.Cootes, A.Hill, C.J.Taylor, J.Haslam, The Use of Active Shape Models For

Locating Structures in Medical Images, Department of Medical Biophysics,
University of Manchester.

68

Appendix A: Software structure

Users Input

For the program to executed, the user must set the following parameters:

Table A1
Description Code variable name Initialization
Directory of the training images string images_names FIXED

Directory of the landmark points string file_folder FIXED

Directory of the Pyramid Images string Pyramid_Folder FIXED

Search Image IplImage*
Search_image USER

Number of label points int number_label_pts USER

Threshold float threshold USER

Length of landmark intensity profile
(model) int nsamples_model USER

Search length int nsamples_search USER

Number of Pyramid scales int nScales USER

The first three directories remain fixed and the user should not modify the name of
the folder where the images and landmark coordinates are stored. The program
reads two text files, one for the images and one for the landmark coordinates. The
user can only modify what is inside these text files. This means that training images
and corresponding landmark points which are not required in the training process can
be discarded by erasing the index (name) of this set.
Every row represents a subset of the total training set and is linked either to the text
file containing the corresponding coordinates or the image of the specific subset. So
for example in figure [A1.a], when the system reads the first line which is “data11.txt”
it will then call the text file containing the coordinates of the 11th training image. For
the images the procedure is similar.

Figure A1.a: text file of landmark points Figure A1.b: text file of the training
images

69

Declaration of structures and classes

This chapter describes in detail all main structures/classes implemented for this
thesis work. The first structure, called Whisker {} has the following form:

struct Whisker
{
 CvMat *Contour_Points;
 CvMat *Contour_Normals;
 CvMat *intervalx;
 CvMat *intervaly;
 CvScalar samples;
 CvMat *derivatives_norm;
 CvMat *covariance_matrix;
 CvMat *mean_samples;
 vector <CvMat*> derivatives_norm_vec, inputMatrix;
};
Listing A1: Whisker structure

The above structure is used to describe and capture all information needed for
defining a profile normal of a landmark point. Its members are described in the table
below:

Table A2
Members name Definition

CvMat *Contour_Points
It’s a matrix containing the coordinates of
the landmark points in the current training
image

CvMat *Contour_Normals It’s a matrix containing the normals to the
landmark points in the image

CvMat *intervalx The linear intervals on the line in the x
direction

CvMat *intervaly The linear intervals on the line in the y
direction

CvScalar samples
Number of samples taken on the profile
normal. This number concerns only the
one side of the normal.

CvMat *derivatives_norm It’s a matrix containing normalised
derivatives of the gray level appearance

CvMat *covariance_matrix Covariance matrix of a point

CvMat *mean_samples This is the mean normalised derivative of
a point

vector <CvMat*>
derivatives_norm_vec

It’s a vector that groups each landmark
point, its normalised gray scale
appearance in all images

vector <CvMat*> inputMatrix
A vector containing the gray level
appearance of the current point in all
images

70

class GrayLevelAppearance
{
public:
 Whisker CurrentImage;
 IplImage *image;

 void GetContourNormalsFace (string path, CvMat *Contour_Points,
 CvMat *ContourNormals);

 void GetContourNormals (string type, CvMat *Contour_Points,
 CvMat *ContourNormals);

 void linear_intervals (CvMat *Contour_Points, CvMat *ContourNormals,
 CvMat *intervalx, CvMat *intervaly, CvScalar *samples);

 void GetDerivatives (IplImage *src_image, CvMat *intervalx, CvMat
*intervaly, CvMat *derivatives_norm, double samples);
};
Listing A2: Class GrayLevelAppearance

The above is considered a more generalised class, containing the aforementioned
structure of listing A1, the image from which the gray level appearance of each
landmark point will be extracted, subject to the following four functions described
below.

class PyramidLevel
{
public:
 GrayLevelAppearance Appearance;
 vector<CvMat*> S; // Mean Covariance matrix
 vector<CvMat*> gs; // Mean normalised intensity
};
Listing A3: Class PyramidLevel

The class PyramidLevel {} is an even more generalised class from the above two.
It contains three public members, the first one being the class described previously
and the other two are vectors containing the covariance matrix and the mean gray
normalised appearance of each landmark point.
In a tree representation, PyramidLevel {} would be the parent,
GrayLevelAppearance {} the inner node and the structure Whisker {} the leaf node.
The relationship connecting the PyramidLevel {} class with the
GrayLevelAppearance {} is a composition because even if the PyramidLevel {} is
destroyed, the GrayLevelAppearance {} can be still be defined in the initial training
image (only the pyramid of the image is destroyed). On the other hand, if the
GrayLevelAppearance {} is destroyed, a whisker cannot exist. In this case, the
relationship will be aggregation. The UML diagram below illustrates this relationship:

71

Figure A2: UML representation of the connectivity between the classes and structures

struct PCAParam
{
 CvMat *P;
 CvMat *b;
 CvMat *mean_ASD;
 CvMat *S;
 float Threshold;
 CvMat *eig_Vec;
 CvMat *eig_Val;
 vector<double> modes;
 vector<CvMat*> new_shapes;
};
Listing A4: Structure PCAParam

The above structure PCAParam {} is the main structure used to capture the statistics
of the aligned shapes. The table below gives the definition for the members of this
structure:

GrayLevelAppearance

+CurrentImage: Whisker
+image: IplImage

+GetContourNormalsFace(path: string, Contour_Points: CvMat*): CvMat*
+GetcontourNormals(type: string, Contour_Points: CvMat*): CvMat*
+linear_intervals(Contour_Points: CvMat*, ContourNormals: CvMat *, samples: CvScalar*): CvMat*
+GetDerivatives(src_image: IplImage*, intervalx: CvMat*, intervaly: CvMat*, samples: double): CvMat*

PyramidLevel

+S: Vector
+gs: vector
+Appearance: GrayLevelAppearance

Whisker

+Contour_Points: CvMat*
+Contour_Normals: CvMat*
+intervalx: CvMat*
+intervaly: CvMat*
+samples: CvScalar
+derivatives_norm: CvMat*
+covariance_matrix: CvMat*
+mean_samples: CvMat*
+derivatives_norm_vec: vector<CvMat*>
+inputMatrix: vector<CvMat*>

72

Table A3
Member Name Description

CvMat *P A matrix containing the most significant
eigenvectors

CvMat *b The model parameter vector whose size depends
on the number of the most significant eigenvalues

CvMat *mean_ASD The mean aligned shape

CvMat *S The covariance matrix of the aligned shapes

float Threshold Part of variance to be explained by the shape
model - Defines the number of modes

CvMat *eig_Vec Total number of eigenvectors deduced from the
aligned shapes

CvMat *eig_Val Total number of eigenvalues deduced from the
aligned shapes

vector<double> modes A vector containing the most significant
eigenvalues

vector<CvMat*> new_shapes
A vector containing the coordinates of new shapes
produced from the most significant eigenvalues
and eigenvectors

Last but not least, to compute the me17 quality fit, a text file named
me17_fixedPoints.txt is used. This file contains the fixed landmark coordinates of
the face where the face model is applied on. Thus, when the search process is
completed, this text file is inserted into the program for comparison. It’s also used
when the face model is placed on the image, in order to check the quality of the initial
position.

73

Appendix B: Aligning a pair of shapes

Given two similar shapes, 𝑥1 and 𝑥2, a rotation 𝜃, scale s and translation �𝑡𝑥, 𝑡𝑦�
could be found to map 𝑥2 into 𝑀(𝑥2) + 𝑡 as to minimize the weighted sum:

𝐸 = (𝑥1 − 𝑀(𝑠,𝜃)[𝑥2] − 𝑡)𝑇𝑊(𝑥1 − 𝑀(𝑠, 𝜃)[𝑥2] − 𝑡) (B.1)

where,

𝑀(𝑠, 𝜃) �
𝑥𝑗𝑘
𝑦𝑗𝑘� = �𝑠 𝑐𝑜𝑠𝜃 −𝑠 𝑠𝑖𝑛𝜃

𝑠 𝑠𝑖𝑛𝜃 𝑠 𝑐𝑜𝑠𝜃 � �
𝑥𝑗𝑘
𝑦𝑗𝑘� (B.2)

𝑡 = �𝑡𝑥 , 𝑡𝑦, … , 𝑡𝑥, 𝑡𝑦�
𝑇 (B.3)

and W is a diagonal matrix of weights for each point.

If,

𝑎𝑥 = 𝑠 cos𝜃 𝑎𝑦 = 𝑠 sin𝜃 (B.4)

a least square approach (differentiate with respect to each of the variables 𝑎𝑥, 𝑎𝑦, 𝑡𝑥,
𝑡𝑦) could be achieved:

�

𝑋2 −𝑌2 𝑊 0
𝑌2 𝑋2 0 𝑊
𝑍 0 𝑋2 𝑌2
0 𝑍 −𝑌2 𝑋2

��

𝑎𝑥
𝑎𝑦
𝑡𝑥
𝑡𝑦

� = �

𝑋1
𝑌1
𝐶1
𝐶2

� (B.5)

where,

𝑋𝑖 = �𝑤𝑘𝑥𝑖𝑘

𝑛−1

𝑘=0

 (B.6) 𝑌𝑖 = �𝑤𝑘𝑦𝑖𝑘

𝑛−1

𝑘=0

 (B.7)

𝑍 = �𝑤𝑘�𝑥2𝑘2 + 𝑦2𝑘2 �
𝑛−1

𝑘=0

 (B.8) 𝑊 = �𝑤𝑘

𝑛−1

𝑘=0

 (B.9)

𝐶1 = �𝑤𝑘(𝑥1𝑘𝑥2𝑘 + 𝑦1𝑘𝑦2𝑘)
𝑛−1

𝑘=0

 (B.10) 𝐶2 = �𝑤𝑘(𝑦1𝑘𝑥2𝑘 − 𝑥1𝑘𝑦2𝑘)
𝑛−1

𝑘=0

 (B.11)

74

Appendix C: Calculating the eigenvectors of the covariance matrix when
there are fewer samples than coordinates

When there are fewer training examples N, than coordinates 2n, the eigenvectors of
the 2𝑛 × 2𝑛 covariance matrix S can be calculated from the eigenvectors of a smaller
𝑁 × 𝑁 matrix derived from the same data. Due to the fact that the eigenvector
calculation time is equal to the cube size of the matrix, this method could save up a
lot of time.

Given N examples 𝑥𝑖 (𝑖 = 1, … ,𝑁), let D be a 2𝑛 × 𝑁 matrix:

𝐷 = (𝑥1,𝑥2, … , 𝑥𝑁) (C.1)

As mentioned in chapter 3, the covariance matrix could be written in the form:

𝑆 =
1
𝑁
𝐷𝐷𝑇 (C.2)

Let T be a 𝑁 × 𝑁 matrix:

𝑇 =
1
𝑁
𝐷𝑇𝐷 (C.3)

and let 𝑒𝑖 (𝑖 = 1, … ,𝑁) be the unit, orthogonal eigenvectors of T corresponding to
eigenvalues 𝛾𝑖:

𝑇𝑒𝑖 = 𝛾𝑖𝑒𝑖 (𝑖 = 1, … ,𝑁) (C.4)

Then from [C.3], [C.4] is equal too:

1
𝑁
𝐷𝑇𝐷𝑒𝑖 = 𝛾𝑖𝑒𝑖 (C.5)

Premultiplying by D,

1
𝑁
𝐷𝐷𝑇𝐷𝑒𝑖 = 𝛾𝑖𝐷𝑒𝑖 (C.6)

𝑆(𝐷𝑒𝑖) = 𝛾𝑖(𝐷𝑒𝑖) (C.7)

Then if 𝑒𝑖 is an eigenvector of T, then 𝐷𝑒𝑖 is an eigenvector of S and has the same
eigenvalue. The N orthogonal eigenvectors of S are then 𝑝𝑖 (𝑖 = 1, … ,𝑁), where:

𝑝𝑖 =
1

�𝛾𝑖𝑁
𝐷𝑒𝑖 (C.8)

with 𝜆𝑖 = 𝛾𝑖.
The scaling factor in [C.8] is required to give the eigenvectors unit length.
Orthogonality can be easily shown:

𝑝𝑖
𝑇𝑝𝑗 =

1
𝛾𝑖𝑁

𝑒𝑖𝑇𝐷𝑇𝐷𝑒𝑗 =
1
𝛾𝑖
𝑒𝑖𝑇𝑇𝑒𝑗 = 𝑒𝑖𝑇𝑒𝑗 = �1 (𝑖 = 𝑗)

0 (𝑖 ≠ 𝑗)
� (C.9)

