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ABSTRACT 
 

 
This master thesis examines the use of a multi resolution Active Shape Model (ASM) 

applied on facial features, utilizing the Viola/Jones face detector.  

The method, initially introduced by Cootes, et. al, requires good initial pose 

parameter values for placing a face model from its local system to the image’s 

system. This is one of the most critical parts of the process from which the 

convergence of the method depends on. For this reason, the Viola/Jones detector 

kicked in, to initially detect the face and subsequently estimate the initial pose 

parameters for positioning the face model in the search image. The testing of the 

face detector as well as the quality of the model’s initial position was executed on 

face images provided by the Milborrow University of Cape Town (MUCT) online 

database.  

For building a face model, a set of training images provided by Cootes was used and 

the search images were chosen randomly from the same training set.   

Experiments made initially on some frontal upright images, showed that the face 

detector succeeded in all images and the placement of the face model was quite 

accurate in most cases. Subsequently, the quality of the model fit using the multi 

resolution active shape model approach, showed that the method converged quite 

well for the inner part of the face but in the outer part, in some cases, was not that 

precise.    

 



1 
 

1  
Introduction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
This thesis will describe in detail the implementation of the Active Shape Model 
method, running in a multi resolution approach, on gray scale images, with the initial 
pose parameters of the face model estimated by the Viola/Jones face detector. 
Generally, good mathematical skills are required (especially linear algebra and 
statistics) and additionally some fundamental knowledge in digital image processing. 
The reader should not limit himself to the mathematical material presented within this 
work but use it as a reference for concurring more solid knowledge in the near future.  
 

1.1 Motivation 
According to the method, when an instance of an object model in a local normalised 
system is given, initial pose parameter values are requested for placing the model 
into the image and begin the searching/convergence process. Nevertheless, given 
some approximate values for translation, rotation and scaling, the process might or 
might not converge. This means that the method itself is very sensitive and 
dependent from the given initial values. Having faces as the object; two things are 
examined within this thesis work:  
  

• Expanding the method to a multi resolution approach. This could improve the 
efficiency and robustness of the existing algorithm. It starts by searching for 
face features in a coarse image and when convergence at the current level 
it’s rescaled and placed as an initial position on the next image level. This 
leads to a faster algorithm and the probability of failing to detect the correct 
facial features, is much less. 
 

• Estimating the initial pose parameter values needed for the placement of a 
face model in the image, using the Viola/Jones algorithm.   
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Figure 1.1: Face detector Figure 1.2: Initial position of the face 

model  
 
 
There are several issues which are not investigated in this thesis work: 
 

1. Developing a system that automatically measures corresponding landmark 
points from a set of training images. This can be considered as an 
autonomous project, since more essential research still needs to be done in 
this area, albeit nothing to-date fully reliable. 
 

2. Face recognition. This thesis deals with the detection of a face and not the 
actual identity of the person in the image. 
 

3. Working with 2D profiles (in this work only 1D profiles are considered). 
 

4. Working with PCA of the gray level appearance of the landmark points. It 
seems that it works better only on RGB images. 
 

5. Restriction to 2D information and not 3D. 
 

6. Not using 64bit images (RGB) but 8bit images (gray scale images). 
 

7. Working with real time (RT) ASM. 
 

8. Working with Active Appearance Models (AAMs)  
 

1.2 Layout of the thesis 
In the second chapter, some basics in statistics are introduced. In the third chapter, a 
very detailed description of the Active Shape Model method is given, firstly explaining 
the classical approach and then extending it to a multi resolution approach. In the last 
part of this chapter the Viola/Jones face detector is mentioned. Subsequently in the 
fourth chapter, the software developed for this thesis is presented. It includes the 
most important classes and also defines - explains all the functions written for this 
thesis. In the fifth chapter, results on real face data are demonstrated together with 
comments about the method used. Finally, the last chapter contains discussions and 
conclusions with respect to the output results of the method applied and 
recommendations for improvements. 
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2  
Background Statistics 

 
 
 
 
 
 
 
 
 
 
 
 
This chapter begins by introducing some basics in statistics, with the intention of 
understanding the Principal Component Analysis approach described later on in this 
chapter. Principal Component Analysis is a mathematical procedure used in the 
statistical part of the Active Shape Model method for building (in general) the object 
model. The reader of this chapter should not restrict himself to the material provided 
here but consider it as a way of understanding the basic idea behind it and thus be 
aware how the statistical part of the Active Shape Model works.  

2.1 Introduction to Statistics 

2.1.1 Mean 

The arithmetic mean, or the “standard” average of a population, 𝑥 is equal too: 
 

𝑥̅ =
1
𝑁
�𝑥𝑖

𝑛

𝑖=1

 (2.1) 

 
where 𝑥̅ is the mean value, N is the total number of the population and 𝑥𝑖 are the 
values in the population. 
 

2.1.2 Standard Deviation 

Standard deviation is a widely used method for measuring the variability in statistics 
and probability theory. It shows how much variation or “dispersion” the data have 
from their average (also known as mean or expected value). A low standard 
deviation indicates that the data points tend to be very close to the mean, whereas 
high standard deviation shows that the data are spread out over a range of values.  
Consider having a random variable 𝑋 = [𝑥1,𝑥2, … , 𝑥𝑛], with each value having the 
same probability. Then the standard deviation, σ, is defined as: 
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𝜎 = �
1
𝑁
�(𝑥𝑖 − 𝜇)2
𝑁

𝑖=1

 (2.2) 

 
where µ is the mean and N the total number of population.  
 
If, instead of having equal probabilities, the values of the random variable have 
different probabilities, then the standard deviation will be: 
 

𝜎 = �
1
𝑁
𝑝𝑖�(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 (2.3) 

 
where, 
 

𝜇 =
1
𝑁
�𝑝𝑖𝑥𝑖

𝑁

𝑖=1

 (2.4) 

 
Have in mind that trying to estimate the standard deviation of the sample, is 
different from estimating the sample standard deviation. 
 
In the first case the standard deviation is computed by the formula [2.2], whereas in 
the second case it would be divided with N-1 samples.    
  

2.1.3 Variance  

In probability theory and statistics, the variance is a measure of how far a set of 
numbers are spread out from each other. It is one of the several descriptors of a 
probability distribution, describing how far the numbers lie from the mean (expected 
value). Mathematically, it is calculated by taking the standard deviation and rising it to 
the power of 2. 
 

𝜎2 =
1
𝑁
�(𝑥𝑖 − 𝜇)
𝑁

𝑖=1

 (2.5) 

2.1.4 Covariance 

In probability theory and statistics, covariance is a measure of how much two 
variables change together. Variance is been considered being a special case of the 
covariance when the two variables are identical. The formula for computing the 
covariance matrix of two variables X and Y is: 
 

𝐶𝑂𝑉(𝑋,𝑌) =
∑ (𝑋𝑖 − 𝑥̅)(𝑌𝑖 − 𝑦�)𝑛
𝑖=1

𝑁
 (2.6) 

 
where 𝑥̅, 𝑦� are the mean of X and Y respectively and N is the size of the population. 
Again, there may be times where the above formula is divided by N-1 as said 
previously.  
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In case of more than two populations (Lets say p size) the covariance matrix S, 
would look like: 
 

𝑆 =

⎣
⎢
⎢
⎢
⎡ 𝑠1

2 𝑠12 ⋯ 𝑠1𝑝
𝑠21 𝑠22 ⋯ 𝑠2𝑝
⋮ ⋮ ⋱ ⋮
𝑠𝑝1 𝑠𝑝2 ⋯ 𝑠𝑝2 ⎦

⎥
⎥
⎥
⎤
 (2.7) 

 
where on the main diagonal are the variances of every variable population and on the 
off diagonal the covariance between them.  
 

2.2 Principal Component Analysis 

2.2.1 What is Principal Component Analysis? 

Principal Component Analysis (PCA), also known as Hotelling transform is a method 
that reduces the dimensions of the data by computing the covariance matrix between 
the data. The first people that started working on this method where Pearson (1901) 
and Hotelling (1933). Pearson was involved in trying to find lines and planes that best 
fit a set of points in a n dimensional space. On the other hand, Hotelling tried to 
increase his “components”, that is the variance in the original variables also known 
as “principal components”. Both Pearson and Hotelling, came across with the 
eigenvalue problem (described later on in this chapter), which was hard to solve for 
an order higher than four and a computer system was needed to process all this 
information. Today PCA, with the help of powerful computer systems, is a method 
widely used and established in different fields of applications.  
 

2.2.2 The Basic Principle 

As in other transformations (e.g  Helmert Transform), PCA tries to transform data 
from one system to another, where a new set of basis vectors are used. However, in 
the PCA case, the basis vectors do not remain constant but they vary based on the 
data being transformed.  
PCA is a linear transformation and the new basis vectors, denoted as 𝑒𝑖 are 
orthogonal between them: 
 

𝑒𝑖𝑇𝑒𝑗 = 𝛿𝑖𝑗 = �
1  𝑖𝑓 𝑖 = 𝑗
0 𝑖𝑓 𝑖 ≠ 𝑗

� (2.8) 

 
where 𝛿𝑖𝑗 is the Dirac’s delta function.  
 
Since PCA is a linear transformation, it means is has translation and rotation 
parameters. Thus, if x are the input data and y the transformed data, the 
transformation is: 
 

𝑦 = 𝐴(𝑥 − 𝜇𝑥) (2.9) 
 
where A contains the new basis vectors and thus 𝐴 =  [𝑒1 𝑒2, … , 𝑒𝑛]𝑇 and 𝜇𝑥 is the 
mean of the data set.  
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The first figure shows the input data where each sample of the data is denoted as 
𝑥𝑖 = [𝑥1𝑖  𝑥2𝑖]𝑇. Second figure illustrates the transformed data where each sample is 
denoted as 𝑦𝑖 = [𝑦1𝑖  𝑦2𝑖]𝑇 and is calculated using equation [2.9]. The first two sub 
figures of figure [2.1] show the transformation from one system to another with the 
main variance expressed in the first two variables 𝑌1 and 𝑌2. Ignoring the second 
variable, the main variance of the data is kept. In this case the information is 
presented in a more compact form (see last sub figure). 
In figure [2.1], ignoring one variable might not make any difference. Nevertheless, if 
the dimensionality of the data is 30 (random number) and their variability could be 
expressed by only two variables, then a compact representation could be achieved. 
Therefore, PCA is applied in cases where high dimensionality of data is present.  
Although PCA is used to reduce the dimensions of the data, one of its main 
properties is that new data set could be created, similar to the initial ones using only 
the new variables. In figure [2.1] the data are uncorrelated and remain as is in lower 
dimensions too.  
 

2.2.3 Mathematics Behind PCA 

As already mentioned, the transformation is given by equation [2.9]. To find A and 
subsequently apply the transformation, the following steps have to be done: 
  
Equation [2.9] could be written as 𝑦 = 𝐴𝑥′ where 𝑥′ = 𝑥 − 𝜇𝑥 and the inverse 
transformation is equal to 𝑥′ = 𝐴−1𝑦. Considering that A is an orthogonal matrix 
where 𝐴−1 = 𝐴𝑇, then 𝑥′ = 𝐴𝑇𝑦 can be re written as: 
 

𝑥′ = [𝑒1  𝑒2   … 𝑒3] ∙ 𝑦 = �𝑦𝑖𝑒𝑖

𝑛

𝑖=1

 (2.10) 

 
If m components are used (𝑚 < 𝑛), then some information could be lost during the 
inverse transformation and that could lead to implausible 𝑥′ shapes. Thus, an 
estimate 𝑥�′ is defined: 
 

𝑥�′ = �𝑦𝑖𝑒𝑖

𝑚

𝑖=1

 (2.11) 

 
As mentioned in the beginning of this section, main purpose is to find A so that the 
difference between 𝑥′ and 𝑥�′ is: 

 

 

 

Figure 2.1: Basic Principle of PCA 

μx1 X1 

Χ2 
e1 

e2 

μx2 

Υ2 

Υ1 

Υ1 

Transformation Reduce dimensions 
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𝛼 = 𝐸{(𝑥′ − 𝑥�′)𝑇  ( 𝑥′ − 𝑥�′) } (2.12) 

 
Putting equations [2.10] and [2.11] together results: 
 

𝛼 = 𝐸 �� � 𝑦𝑖𝑒𝑖

𝑛

𝑖=𝑚+1

� 𝑇     � � 𝑦𝑖𝑒𝑖

𝑛

𝑖=𝑚+1

� � (2.13) 

 
Because of the orthonormality introduced in [2.8], equation [2.13] becomes: 
 

𝛼 = 𝐸 � � 𝑦𝑖2
𝑛

𝑖=𝑚+1

 � (2.14) 

 
From equation [2.9] it comes out that 𝑦𝑖 = 𝑒𝑖𝑇𝑥′ giving: 
 

𝛼 = 𝐸 � � �𝑒𝑖𝑇𝑥′�
2

𝑛

𝑖=𝑚+1

� = 𝐸 �  � �𝑒𝑖𝑇𝑥′��𝑒𝑖𝑇𝑥′�
𝑛

𝑖=𝑚+1

 � (2.15) 

 
Since 𝑒𝑖𝑇𝑥′ = 𝑥′𝑇𝑒𝑖, equation [2.15] becomes: 
 

𝛼 = 𝐸 � � �𝑒𝑖𝑇𝑥′��𝑥′
𝑇𝑒𝑖�

𝑛

𝑖=𝑚+1

� = 𝐸 �  � 𝑒𝑖𝑇𝑥′𝑥′
𝑇𝑒𝑖

𝑛

𝑖=𝑚+1

� (2.16) 

 
Changing the order of the summation (because 𝑒𝑖 is deterministic) it exists: 
 

𝛼 = � 𝑒𝑖𝑇𝐸�𝑥′𝑥′
𝑇�

𝑛

𝑖=𝑚+1

𝑒𝑖 (2.17) 

 
Setting as 𝐶𝑥 = 𝑥′𝑥′𝑇 then: 
 

𝛼 = � 𝑒𝑖𝑇𝐶𝑥

𝑛

𝑖=𝑚+1

𝑒𝑖 (2.18) 

 
At this point, in order to find the best/optimal 𝑒𝑖 the square error function should be 
minimised. This is done by defining a function using Lagrange multiplier: 
 

𝑔(𝑒𝑖) = 𝑒𝑖𝑇𝐶𝑥𝑒𝑖 − 𝜆�𝑒𝑖𝑇𝑒𝑖 − 1� (2.19) 
 
Applying partial first order derivative to the previous function it becomes: 
 

�𝑔(𝑒𝑖) = 0 =>  �𝑔(𝑒𝑖) = 𝐶𝑥𝑒𝑖 + 𝐶𝑥𝑇𝑒𝑖 − 𝜆2𝑒𝑖 = 0 (2.20) 
 
Since 𝐶𝑥 = 𝐶𝑥𝑇, equation [2.20] becomes: 
 

𝐶𝑥𝑒𝑖 − 𝜆𝑒𝑖 = 0 => (2.21) 
 

(𝐶𝑥 − 𝜆𝐼) ∙ 𝑒𝑖 = 0 (2.22) 
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where I is the identity matrix.  

2.2.4 The Eigenvalue Problem 

Equation [2.22] is known as the eigenvalue problem and it’s a problem which is seen 
in other applications besides PCA. To solve this problem, the determinant of equation 
[2.22] is taken. Due to the fact that equation [2.22] is a homogeneous system of the 
form 𝐴𝑥 = 0 and has no trivial solution, the determinant of the coefficient matrix is 
zero: 
 

𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡(𝐶𝑥 − 𝜆𝐼) = 0 (2.23) 
     
Finding the polynomials of the above equation and getting the square root of them, 
these are the eigenvalues 𝜆𝑖 of 𝐶𝑥. Every eigenvalue 𝜆𝑖 corresponds to the i’th 
eigenvector ei and also 𝜆𝑖  ≥ 𝜆𝑖+1.  
After finding the eigenvectors, they have to be arranged as row vectors in the A 
matrix and then equation [2.9] is ready to be used.  
 

2.2.5 Choosing which components to ignore 

Since the eigenvectors have been computed, the input data could be transformed. 
The only problem is that the dimensions of the input data haven’t been reduced. 
Thus, the task now is to reduce the dimensions of the data without losing much 
information about the initial data.  
There are several existing methods for this purpose. Nevertheless, the one that is 
worth describing is the m – method. The main goal of all methods is to maintain as 
much variation of the initial data as possible in the smallest space possible.  
According to the m – method, since the i’th eigenvalue is equal to the variance of the 
i’th variable and given that 𝜆𝑖 ≥ 𝜆𝑖+1, the amount of variability kept is defined as: 
 

𝐼𝑘 =
∑ 𝜆𝑖𝑚
𝑖=1

∑ 𝜆𝑖𝑛
𝑖=1

∙ 100% (2.24) 

  
where 𝜆𝑖 is the i’th eigenvalue, m is the number of eigenvectors used, n is the 
dimensions of the input data and 𝐼𝑘 is the percentage of variance kept in the 
transformation.  
 
 

Figure 2.2: The preserved and removed information 

I1 

I2 

m n eigenvectors 

eigenvalues 
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The figure above shows the eigenvectors in the X axis with their associated 
eigenvalues in the Y axis.  
The value m is used as a threshold value between the selected and ignored 
eigenvectors, I1 represents the variation kept and I2 the ignored one. This technique 
is known as the m – method.  
 

2.2.6 How to apply PCA 

To apply PCA five steps have to be done. The first step is to acquire the data. In this 
case the more data used the better the method will work. The second step is to 
compute the covariance matrix 𝐶𝑥 of the input data. This could be calculated from 
𝐶𝑥 = 𝑉𝑉𝑇 where 𝑉 = [𝑥1′ , 𝑥2′ , … , 𝑥𝑛′ ] and 𝑥𝑖′ = 𝑥𝑖 − 𝜇𝑥. Third step is to derive the 
eigenvectors and eigenvalues from equation [2.23]. Subsequently, when the 
eigenvalue problem has been solved, it has to be determined which eigenvalues to 
keep. For this purpose the m – method could be used. Last step concerns mapping 
the data in a lower dimension using equation [2.9]. 
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3  
Active Shape Models 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter describes in detail the Active Shape Model method. It begins with the 
labeling of the object in training images followed by the alignment of the data sets. It 
continues with the extraction of some statistical information about the training 
shapes. Subsequently, a description of the method for getting the gray level 
appearance information of each model point. Then, the placing of the face model in 
the testing image to detect the said object. Furthermore, an improved multi resolution 
approach is described. Last but not least, some basic information of the Viola Jones 
algorithm is given.    
  

3.1 Introduction 
Active Shape Models is a method that was developed by T.F. Cootes et.al for 
detecting known objects in images. Till now, building rigid models of objects for 
image understanding was well achieved. However, there are cases where objects of 
the same class are not identical, thus rigid models wouldn’t work, for example the 
shape of a heart, where it is one object represented from different shapes and sizes. 
With the method explained in this chapter, new models could be produced from 
images representing the same object with different shape/ size variations. In addition, 
Cootes tried to create models that although vary but still preserve the structures of 
the object class they belong to.  
For the method to work, some points are needed that represent the shape of the 
object within different training examples. These sets are then aligned in order to 
minimize the variation between equivalent points. From these aligned data sets, a 
“Point Distribution Model” is created, which gives a mean shape of the aligned 
shapes and some model parameters that express the different variations within the 
training set.  
Given this model and an image that contains this object, an iterative scheme could 
be applied that would find the appropriate pose and model parameters which best fit 
the model in the object.   
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In order for the process to start, some approximate pose parameters have to be 
given to place the model within the image. That involves finding the best translation, 
rotation and scaling parameters which will best fit the model in the image. This 
method is also very similar with the Active Contour Models of Kass et.al. The main 
difference is found in the global shape constraints, hence to differentiate from the 
Active Contour Models it was named Active Shape Models. The main advantage of 
this method is that the model can only deform in ways which are similar to those in 
the training set.  

3.2 Shapes 
A shape, by definition in [15] is “all the geometrical information that remains 
when location, scale and rotational effects are filtered out from an object”. That 
means that it remains invariant to Euclidean similarity transformations. A shape is 
described by a set of points which in this thesis are expressed in the form seen in Eq. 
[3.1]. An example of a shape is shown below, together with its points (in this example 
arbitrary coordinates) that define it. 
 
 

 

Number 
of 

Points 
x y 

1 2.0 2.0 
2 0.0 0.0 
3 4.0 0.0 

𝑥 =

⎣
⎢
⎢
⎢
⎢
⎡
2.0
2.0
0.0
0.0
4.0
0.0⎦

⎥
⎥
⎥
⎥
⎤

 

Figure 3.1: Left a simple shape, in a triangular form, defined by three points. 
Middle is the same shape defined as an array. Right is the same shape described 
as a vector (Self illustrated). 

 
The points from the above figure move in some invariant way. If the shape moves 
(translated), then the shape remains the same. If it’s rotated or scaled, it still remains 
the same shape. The edges are not considered part of the shape but are used to get 
the relationship between the points.  
The distance between two points is the Euclidean distance between the points. The 
distance between two shapes, according to Procrustes in [2] is equal to the sum of 
the distances between their corresponding points. The Procrustes distance between 
two shapes 𝑥1 and 𝑥2 is the root mean square distance between the shape points 
after alignment �(𝑥1 − 𝑥2) ∙ (𝑥1 − 𝑥2). The centroid 𝑥̅ (also known as the position of 
the shape), is the mean of the point positions. The size of the shape is defined as the 
root mean square distance between the shape points and the centroid.  
 

3.3 Point Distribution Model 

3.3.1 Labeling the training set 

Every shape is expressed by a number of landmark points, also known as “landmark 
points”. According to Bookstein [25], every landmark point is described and 
categorized according to their usefulness. Thus, they can be expressed in three 
different categories:  

2 3 

1 
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• Points that represent a particular part of the object, such as the centre of an 
eye or sharp boundaries.  
 

• Points that are placed at the highest part of the object with a particular 
orientation or curvature extrema.  
 

• Points which are being interpolated from other points of types 1 and 2. In this 
case the points are equally spaced.  
 

The figure below indicates the annotation of a face that contains 79 points. In 
general, as per Bookstein, points of type 1 are preferable to those of type 2, since 
they are much easier to identify. Nevertheless, points of type 2 and 3 are always 
necessary due to the fact that they are used to describe the shape of the object with 
much more detail.   
 

 
Figure 3.2: Seventeen nine landmark points describing the shape of a face (Marios 
Savvides, et.al, 2009). 

 
The simplest method for choosing landmark points for each training image, is usually 
achieved by an expert (manually). Though, this can be very time consuming 
especially when the number of the training images is very large. In practice, 
automatic and semi – automatic methods have been developed to do this annotation 
as automated as possible.       
As mentioned previously, every shape x, is described in 2D by n points placed in a 
vector of the form: 
 

𝑥 = (𝑥1,𝑦1, … , 𝑥𝑛,𝑦𝑛)𝑇 (3.1) 
 

3.3.2 Aligning the Training Set 

In order to be able to compare equivalent points from different shapes in the training 
set, they should be aligned within a common coordinate frame. There is considerable 
literature concerning the alignment of shapes. Although the most frequently used 
method is based on Procrustes Analysis [2], Cootes in [25] explains a modification of 
this method. This is done by scaling, rotating and translating the shapes so that the 
weighted sum of squares of distances between equivalent points is minimized 
(energy function): 
 

𝐸𝑗 = �𝑥𝑖 −  𝑀�𝑠𝑗,𝜃𝑗��𝑥𝑗� − 𝑡𝑗�
𝑇𝑊�𝑥𝑖 −  𝑀�𝑠𝑗,𝜃𝑗��𝑥𝑗� − 𝑡𝑗� (3.2) 

 
where: 
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�𝒙𝒊,𝒙𝒋� are the coordinates of a pair of shapes 
𝑴�𝒔𝒋,𝜽𝒋��𝒙𝒋� is a rotation by theta and scaling by s analyzed as: 
 

𝑀(𝑠,𝜃) �
𝑥𝑗𝑘
𝑦𝑗𝑘� =  � 𝑠 ∙ 𝑐𝑜𝑠𝜃 𝑠 ∙ 𝑠𝑖𝑛𝜃

−𝑠 ∙ 𝑠𝑖𝑛𝜃 𝑠 ∙ 𝑐𝑜𝑠𝜃� �
𝑥𝑗𝑘
𝑦𝑗𝑘� 

 
(3.3) 

where 𝒕𝒋 is the translation of the second shape: 
 

𝑡𝑗 =  �𝑡𝑥𝑗, 𝑡𝑦𝑗, … , 𝑡𝑥𝑗, 𝑡𝑦𝑗�
𝑇 (3.4) 

 
and W is a diagonal matrix of weights for each point. 
The meaning of the weights is to provide the amount of significance of each point, 
that is to show which points are more stable compare to others. So if 𝑅𝑘𝑙 is the 
distance between points k, l and 𝑉𝑅𝑘𝑙 is the variance of this distance over the training 
set, then the weight 𝑤𝑘 for the kth point is equal too: 
 

𝑤𝑘 = ��𝑉𝑅𝑘𝑙

𝑛−1

𝑡=0

�

−1

 (3.5) 

 
If a point tends to move more, compared to the other points in the training set, then 
the variance is large, otherwise is small. 
The alignment procedure requires normalization of the shapes. This involves setting 
the current mean shape at some suitable defaults for translation, rotation and scaling. 
For the translation phase that is to offset the shape to the origin so its center of 
gravity (C.o.G) be at the point zero of the coordinate system. This is achieved by 
removing the translation from the center of the shape with respect to the systems 
origin from all its points. This will result an automatic shift of the shape to the origin. 
The next step is to normalize the scale factor by scaling the mean distance to the 
origin for each component to 1 (The mean Euclidean distance will then be √2 ). The 
last step of the normalization is the rotation part, where according to Cootes [25], it 
should be a rotation where a specific part of the object is always on top. A solution to 
this could be a rotation which is equal to the mean value of the arctangent of all 
landmark points. In mathematical notation it’s equivalent to: 
 

𝑎𝑛𝑔𝑙𝑒�������� =
∑ 𝑎𝑡𝑎𝑛2 �𝑌𝑡 𝑋𝑡� �𝑛−1
𝑡=0

𝑛
 (3.6) 

 
The final rotation is obtained by subtracting the mean angle from every 𝑎𝑡𝑎𝑛2 �𝑌𝑡 𝑋𝑡� �.  
 

 
Figure 3.3. Alignment of a set of faces with the mean shape drawn on top with a 
thicker line (Milborrow, 2007). 
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Another solution , which is the one implemented within this thesis is to always rotate 
a shape according to the rotation that the reference shape has (usually the first 
shape in the training set).  
Normalizing the mean shape to a default scale and pose (translation and rotation) 
ensures that the algorithm will converge. Experiments have shown that the alignment 
converges with very few iterations. Note, that normalizing the mean shape and then 
align all others to it, is not the same as normalizing every shape individually. If every 
shape was constrained to have a normalized scale equal to 1, a distortion of the 
model could occur during the alignment face. On the other hand, if all shapes have to 
align to the current mean shape, then they will have a scale similar to that of the 
mean. Result from the alignment of a set of training faces is shown above in Fig. [3.3] 
together with the mean shape drawn on top. A simple alignment algorithm proposed 
for face alignment is as follows: 
 
 

Graph 3.1: Alignment algorithm for faces (Self illustrated). 
 
 

Convergence? 

Done. Shapes aligned 

Set a reference shape (usually the first shape) 

Scale the reference shape to unit size. This could be set to 
𝑥̅0 

Align all shapes to the current mean shape 

Recalculate the mean shape from the aligned shapes 

Normalize (constrain) the new mean shape (align to 𝑥̅0 and scale to unit weight)   

Input set of unaligned shapes 

No 

Yes 
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3.3.3 Capturing the statistics of the aligned shapes 

Having a set of aligned shapes, their statistic could be derived. All aligned shapes 
form a distribution within a 𝑛𝑑 dimensional space. From this distribution, new 
examples could be generated similar to the ones coming from the aligned shapes. 
After the alignment of a training set, some clouds are created around each landmark 
point. These clouds could be either dense or defused. In the case of dense, the 
variability is less and if defused, much greater. The Point Distribution Model in this 
case tries to create a model of this variability for each one of these clouds.   
Have in mind that the position of each landmark is not independent but dependent 
from all other points. Having every aligned shape represented by a point in a 2𝑛 
dimensional space, then in case of N number of aligned shapes, there exists N points 
in the 2𝑛 space. All these N points are assumed that they lie within what is called 
Allowable Shape Domain (ASD). The size and shape of the ASD depends upon the 
points distribution within this ASD. Every 2𝑛 point within this ASD can create shapes 
similar to the ones in the training set. According to Cootes [25], an assumption has 
been made that the shape of this domain is approximately Ellipsoidal with the center 
of the ellipse being the mean shape and the major axis is the variation of the mean 
shape. 
 
Given a set of N aligned shapes 𝑥𝑖, the mean shape 𝑥̅ (the center of the ASM) could 
be calculated from: 
 

𝑥̅ =  
1
𝑁
�𝑥𝑖

𝑁

𝑖=1

 (3.7) 

 
Then the 2𝑛 ×  2𝑛 covariance matrix S can be calculated using: 
 

𝑆 =  
1
𝑁
�𝑑𝑥𝑖

𝑁

𝑖=1

𝑑𝑥𝑖𝑇 (3.8) 

 
The principal axes of the ellipsoid which describe the variation of a shape are 
expressed by 𝑝𝑘  (𝑘 = 1, … ,2𝑛), unit eigenvectors of S, so that: 
 

𝑆𝑝𝑘 =  𝜆𝑘𝑝𝑘 (3.9) 
 
where 𝜆𝑘 is the eigenvalue of S and  𝑝𝑘𝑇𝑝𝑘 = 1. 
 
According to the theory of Principal Component Analysis, the eigenvectors of the 
covariance matrix S corresponding to the largest eigenvalues, describe or capture 
most of the variation of the shapes statistics (they represent the largest axes of the 
ellipsoid). Thus, the 2𝑑 ellipsoid could be approximated by an ellipsoid of lower 
dimensions, let’s say t.  
One way of calculating the smallest number of modes t that describe the largest part 
of the variation of 𝜆𝑇 where, 
 

𝜆𝑇 =  �𝜆𝑘

2𝑛

𝑘=1

 (3.10) 

 
is the total variance of all the variables: 
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�𝜆𝑖

𝑡

𝑖=1

≥ 𝑓𝑢𝜆𝑇 (3.11) 

 
where 𝑓𝑢 is the part of variance to be explained by the shape model and also defines 
the number of modes (experiments made, say it should have a value of 0.98 with 
alignment or 0.995 without alignment). 
Any point in the ASD can be reached - expressed by taking the mean corresponding 
point and adding a linear combination of the eigenvectors. Thus, every shape in the 
training set can be approximated by taking the mean shape and a combination of the 
deviations obtained from the first t modes: 
 

𝑥 =  𝑥̅ + 𝑃𝑏 (3.12) 
 
where, 
 
 𝑥̅ is the mean shape (of the ASD),  
𝑃 = (𝑝1,𝑝2, … ,𝑝𝑡) is the matrix with the first t eigenvectors and 
𝑏 = (𝑏1,𝑏2, … , 𝑏𝑡)𝑇 is a vector of weights (model parameters). 
 
By varying the vector of weights b within suitable limits, new shapes could be 
generated similar to those in the training set. The limits for 𝑏𝑘 are derived by 
examining the distribution of the parameter values used to derive the training set. 
Thus, the limits applied are: 
 

−3�𝜆𝑘 ≤ 𝑏𝑘 ≤ 3�𝜆𝑘 (3.13) 
 
which is three standard deviations from the mean, where most of the variation is 
expressed. 
 
Another method for choosing model parameters 𝑏𝑘 is to compute the Mahalanobis 
distance  𝐷𝑚 from the mean and if the difference is less than a 𝐷𝑚𝑎𝑥 (where Cootes 
in most papers sets it to 3) then the value for the specific element of the model 
parameter vector is maintained. In a mathematical notation that is: 
 

𝐷𝑚2 = ��
𝑏𝑘2

𝜆𝑘
�

𝑡

𝑘=1

≤ 𝐷𝑚𝑎𝑥
2  (3.14) 

 

3.3.4 Understanding the Shape Model 

It is easier to use rectangles to describe the shape model rather than complicated 
face shapes. The figure below shows a number of rectangles, symmetrical around 
the origin. To specify the four points of any of these rectangles, eight numbers are 
required: four, x and y coordinates. Taking into account what was said about the 
symmetry, the rectangles could actually be described by just two parameters: its 
width and height.  
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Figure  3.4: Rectangular shapes (Self illustrated). 
 
 
 

 

 

 

Figure 3.5 
Variation of the first component (Self 
illustrated). 

Figure 3.6 
 Variation of the second component 
(Self illustrated). 

 
Using Eq. [3.12] to generate a shape model (in this case a rectangle) the form it 
takes is: 
 

𝑥� = �

23 12
−23 12
−23 −12
23 −12

�+ 𝑏0 �

12 4
−12 4
−12 −4
12 −4

� + 𝑏1 �

−4 12
4 12
4 −12
−4 −12

�+ ⋯ (3.15) 

 
The eigenvalues of the covariance matrix 𝑆 sorted by descending order are 3778, 
444, 2, 0.1 etc. There are eight eigenvalues altogether, two for every landmark point, 
that is one for x and y element. From these eight eigenvalues, only the first two 
remain and that’s because they represent most of the shapes variation (>98%). Thus, 
the shapes can be parameterized by just two parameters, 𝑏0 and 𝑏1. The first 
parameter varies the first eigenvector and in this case it changes the size of the 
generated rectangle. The second parameter varies the second eigenvector, which in 
this example adjusts the aspect ratio of the shape.   
 

3.3.5 An Example of a Shape Model 

Figure (3.7) shows example shapes from a training set of 300 labeled faces. Each 
image is annotated with 133 landmarks.  
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Figure 3.7: Example shapes from training set of shapes (T.F. Cootes & C.J.Taylor, 
2004). 

 
The shape model has 36 modes which correspond to approximately 98% of the total 
variance of the landmark points. The figure below shows the result of varying only the 
first three shape parameters within ± 3 standard deviations from the mean shape and 
setting the other shape parameters to zero.  
 

 
Figure 3.8: Varying each of the first three shape parameters within ±3 s.d (T.F. 
Cootes & C.J.Taylor, 2004). 

 

3.4 Modeling Gray Level Appearance 
In order to detect an instant of a model within new images, not only the shape but 
also gray-level appearance is important. This is done by examining the statistics of 
the gray level appearance around the neighbor of each landmark point. Since every 
point corresponds to a particular part of an object, the gray level appearance of that 
point in different example images will not be identical but quite similar. Cootes in [28] 
uses the gray level information to compute the movement of the points in a different 
position and finally detect the contour of the object as accurate as possible.   
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3.4.1 Computing Normal to Boundary 

Although the gray level information around the area of each point is considered being 
2D, within this thesis the limitation will be done only on 1D information.  
In this case, the gray level information is derived from 1D profiles, normal to the 
boundary passing through the points. This profile normal, also known as “whisker” is 
defined from the following equations: 
 
 

Figure 3.9: Normal to a landmark point (Self illustrated). 
 

�𝑡𝑥 , 𝑡𝑦� ≈
�𝑑𝑥 ,𝑑𝑦�

�𝑑𝑥2 + 𝑑𝑦2
 (3.16) 

 
where  𝑑𝑥 = 𝑋𝑖+1 − 𝑋𝑖−1 and 𝑑𝑦 = 𝑌𝑖+1 − 𝑌𝑖−1 
 
The normal to the boundary is created by computing firstly the tangent to the current 
point and then rotating it clockwise by 90 degrees. The normal is a unit vector and 
has a length of one. 
 

3.4.2 Sampling along profiles 

If the profile runs from 𝑝𝑖𝑠𝑡𝑎𝑟𝑡 to 𝑝𝑖𝑒𝑛𝑑 and has length of 𝑛𝑝 pixels, then every interval 
point on this profile normal is computed from: 
 

𝑦𝑖𝑘 = 𝑝𝑠𝑡𝑎𝑟𝑡 +
𝑘 − 1
𝑛𝑝 − 1

(𝑝𝑖𝑒𝑛𝑑 − 𝑝𝑖𝑠𝑡𝑎𝑟𝑡) (3.17) 

 
where 𝑦𝑖𝑘 is the kth point on the profile normal i (see Fig. [3.10]). 
 
Usually the distance between each interval point is equal to 1 pixel. 
 

 (Xi+1, Yi+1)  

 (Xi-1, Yi-1)   

Normal (nx, ny) = (-ty, tx) 

Tangent (tx, ty) 
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Figure 3.10: Interpolated points on the whisker (Self illustrated). 
 

3.4.3 Forming a profile 

Having computed the normal at each model point together with the linear intervals on 
these lines, the last step is to form the gray level appearance of each point. This is 
achieved by setting each element (interpolated or interval point) on the profile vector 
(whisker) of a landmark point, to the gray level intensity (0 - 255) of its image below it 
(see Fig. [3.11]).  
 

 
Figure 3.11: Profile normal of a point (Self illustrated). 

 
The above figure shows interpolated points (blue color) placed on a profile normal 
(red colour) of a model point (point at which the red and green lines intersect) with 
the corresponding pixels that they belong to, marked with white colour. Sometimes 
you may have two interpolated points placed in one pixel, so in that case they will be 
assigned with the intensity of that pixel.  
 
The next step is to replace each profile element by the intensity gradient.   

Profile normal 
to boundary 

Interpolate at 
these points 

Model 
point 

Model 
boundary 
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This is done by setting the difference between the intensity of the next point and the 
previous point, divided by two (in some literature the first derivative might be found 
without the deviation by 2 but only with the intensity differences, which is also 
considered correct): 
 

𝑔𝑖𝑗𝑘 =
�𝐼𝑗�𝑦𝑖(𝑘+1)� − 𝐼𝑗�𝑦𝑖(𝑘+1)��

2
 (3.18) 

 
Divide each element of the resulting vector with the sum of all absolute elements of 
that vector (normalizing the profile): 
 

𝑔𝑖𝑗′ =
𝑔𝑖𝑗

� �𝑔𝑖𝑗𝑘′ �
𝑛𝑝

𝑘=1

 
(3.19) 

 
The purpose of normalization is to reduce  the effect of image lighting and contrast.  
For each point i, calculate the mean normalized profile: 
 

𝑔̅𝑖 =
1
𝑁𝑆
�𝑔𝑖𝑗′
𝑁𝑆

𝑗=1

 (3.20) 

 
Last but not least, calculate the 𝑛𝑝 ×  𝑛𝑝 covariance matrix, 𝑆𝑔𝑖 that will give a 
statistical description for the profile of the current label point.  
Given a simple numerical example, suppose a profile normal consists of (2·8+1) 
interpolated points (that is 8 points at each side of the profile normal plus one for the 
current model point position). The mean normalized derivative profile 𝑔̅𝑖 will then 
have a size of 17x1 and a covariance matrix of size 17x17.    
 

3.5 Applying shape model 
Having generated acceptable shape models of an object within ± 3 standard 
deviations and the grey level of appearance around each point, this information could 
be used to find examples of the modeled structures within an image. In general, this 
procedure involves two mandatory stages: 
 

• Number of hypothesis made, giving approximate locations of the model points 
(iteration process) 
 

• From all hypotheses, the best one will be chosen.  
 
The initial hypothesis involves finding and placing the model shape from its local 
coordinate system to the image system. This is done by applying the “appropriate” 
initial pose (translation, rotation and scaling) and shape parameters, assuming that 
the position of the object within the searching image is known.  
An instance of a model, X, for a set of pose and shape parameters are given by: 
 

𝑋 = 𝑀(𝑠,𝜃)[𝑥] + 𝑋𝑐 (3.21) 
 
where, 
 
𝑀(𝑠,𝜃) is a rotation by 𝜽 and a scaling by s 
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x is the position of the model shape within the local coordinate frame 
𝑋𝑐 is the position of the center of the model in the image frame. 
 
Cootes in [28] suggests an iterative method for refining the shape and pose 
parameters so as to give a better match between a model instance and the 
structures in the image. The algorithm is as follows: 
 

1. Initialize the shape parameters b to zero 
2. Generate the model instance 𝑥 =  𝑥̅ + 𝑃𝑏. This means that the model instance 

will be equal to the mean shape.  
3. Find the pose parameters to place the model shape into the image 
4. Compute the proposed adjustments to the points 
5. Find the pose parameters that align the current shape to the updated shape. 
6. Project back to the local coordinate system the updated shape and compute 

the coordinate difference from the previous state of the shape. 
7. Updated the shape parameters b 
8. Apply constraints on b 
9. If not converged1, return to step 2.  

 

3.5.1 Calculating a suggested movement for each model point 

Given an initial estimate of the model points position within the image, new 
suggested points have to be calculated which will move each model point to a better 
position. Making the assumption that model points represent the boundary of an 
object, their movement to a better position (adjustment) will shift them towards the 
edges of the image object. Having the gray scale appearance of each model point 
from training, the adjustment involves finding the position/region which better 
matches the sampled model.  
For an arbitrary point of the shape model placed in the image, a derivative (or 
sample) profile g is extracted of some length 𝑙(> 𝑛𝑝). The profile model is then 
shifted to each position of the sample profile till it finds the position where it best 
fits\matches.  
 
  

Figure 3.12: Part of an object boundary 
approximating the edge of an image 
object (Self illustrated). 

Figure 3.13: Suggested movement of a 
point along the normal boundary, 
towards the direction where the profile 
model best fits the sampled profile (Self 
illustrated). 

 
                                                
1 Convergence means applying an iteration which will not produce any significant change in the pose nor the shape 
parameters. The following chapters will provide a more detailed explanation of the complete process. 
 

Image 
object 

Model 
Points 
 

Model 
Boundar
 

 

Image 
object 
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Mathematically speaking, the process of trying to find the position in the sample 
profile where the profile model best fits is expressed by the square of the 
Mahalanobis distance: 
 

𝑓(𝑑) = (ℎ(𝑑) − 𝑔̅)𝑇 𝑆𝑔−1 (ℎ(𝑑) − 𝑔̅) (3.22) 
 
where,  
 
ℎ(𝑑) is a sub – interval of g of length 𝑛𝑝, centered at point d within the sample profile  
𝑔̅  is the normalized mean gray level appearance of that model point and 
𝑆𝑔−1 is the inverse of the covariance matrix of the model point 
 
The value of 𝑓(𝑑) decreases as the fit improves. Thus, the point of best fit is the one 
for which 𝑓(𝑑) is minimum.  
 
  

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 

 1 2 3 4 5 6 7 8 9  

  -4 -3 -2 -1 0 1 2 3 4       
                   
 
 
 
 
 
 
Figure 3.14: Movement of the profile model along the sampled profile (Self 
illustrated). 

 
The above figure is used for the reader to have a better “visualized” representation of 
how the quality of fit is found between the sample and model profile.  
According to this, the sampled profile has a length equal to 17 (2·l+1) pixels and the 
model profile of 9 (2·np+1) pixels.  
The model profile, as mentioned previously should always be smaller than the 
sample profile. Subsequently, the model profile runs from left to right at 9 different 
locations and the quality of measure is calculated from Eq. (3.22). The number of 
offsets are calculated from: 
 

𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑜𝑓𝑓𝑠𝑒𝑡𝑠 = (2𝑙 + 1) −  �2𝑛𝑝� (3.23) 
 
As it can be seen, the minimum position (best fit) is found at the location 3 out of 9 
but because all distances start from the center point of the samples profile (that is 0) 
it’s actually minimum at the location -2 of the sampled profile. The position of the 
minimum, with the starting point being the center of the sampled profile, is calculated 
from: 
 

𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = (𝑚𝑖𝑛𝑃𝑜𝑠 − 1) −  ((𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑜𝑓𝑓𝑠𝑒𝑡𝑠 − 1) 2⁄ ) (3.24) 
 
The displacement vector from the current location the model point is placed on the 
image, to the location of best fit, is calculated by: 
 

l = 8 

[dX, dY] 

Range of offsets 

Sampled 
profile 

Profile 
model 

np = 4 
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𝑑𝑋 = 𝑛𝑥 ∙ 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 
 

(3.25) 

𝑑𝑌 = 𝑛𝑦 ∙ 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 
 

(3.26) 

By adding the corrections to the current model point, the position of the suggested 
new point is been calculated.   
 

3.5.2 Computing changes in pose and shape parameters 

After adjusting the model shape from its current position X, to a new suggested 
position [X + dX], the pose and shape changes that connect the current with the new 
shape have to be calculated. If the current estimate of the model is centred at (𝑋𝑐 ,𝑌𝑐) 
with orientation 𝜃 and scale s, a new translation (𝑑𝑋𝑐 ,𝑑𝑌𝑐), rotation 𝑑𝜃 and scaling 
factor (1 + 𝑑𝑠) are desirable. These pose corrections can be calculated by using 
Cootes alignment algorithm, as per  Appendix A. 
Having adjusted the pose parameters, there remain residual adjustments which can 
only be computed by deforming the shape of the model. Firstly, the adjustments dx 
are calculated, in the local coordinate frame, that cause the points X to move by dX 
when they are combined with some new pose parameters.  
If the initial position of the model points in the image frame is given by Eq. [3.21], the 
new residual adjustments dx, in the local coordinate frame are given from: 
 

𝑀�𝑠(1 + 𝑑𝑠), (𝜃 + 𝑑𝜃)�[𝑥 + 𝑑𝑥] + (𝑋𝑐 + 𝑑𝑋𝑐) = (𝑋 + 𝑑𝑋) (3.27) 
 
By doing some matrix operations on Eq. [3.27] it becomes: 
 

𝑀�𝑠(1 + 𝑑𝑠), (𝜃 + 𝑑𝜃)�[𝑥 + 𝑑𝑥] = (𝑀(𝑠,𝜃)[𝑥] + 𝑑𝑋) − (𝑋𝑐 + 𝑑𝑋𝑐) (3.28) 
 
and since, 
 

𝑀−1(𝑠,𝜃)[ ] = 𝑀(𝑠−1,−𝜃)[ ] (3.29) 
 
dx is equal to: 
 

𝑑𝑥 = 𝑀�𝑠(1 + 𝑑𝑠)−1,−(𝜃 + 𝑑𝜃)�[𝑦] − 𝑥 (3.30) 
 
where, 

𝑦 =  𝑀(𝑠,𝜃)[𝑥] + 𝑑𝑋 − 𝑑𝑋𝑐 (3.31) 
 
Although, Eq. [3.31] calculates the suggested movements of the points x in the local 
coordinate system, these movements are not consistent with the shape model. Thus, 
dx has to be transformed from its local system into the model parameter space and 
the corrections are then notated with db.  
 
Adding in Eq.[3.11] the shape corrections db, it becomes: 
 

𝑥 + 𝑑𝑥 ≈ 𝑥̅ + 𝑃(𝑏 + 𝑑𝑏) (3.32) 
 
and by subtracting 3.11 from 3.31 it gives: 
 

𝑑𝑥 = 𝑃(𝑑𝑏) (3.33) 
 
Solving for db, the final corrections for the shape model are given from: 
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𝑑𝑏 =  𝑃𝑇𝑑𝑥 (3.34) 
 
since 𝑃𝑇 = 𝑃−1 due to orthogonality and unit length.   
 

3.5.3 Updating the pose and shape parameters 

The equations in the previous section were used to compute the corrections of the 
pose and shape parameters between the current and updated – suggested shape. 
The goal now is to apply them in an iterative scheme until the process converges: 
 

𝑋𝑐 → 𝑋𝑐 + 𝑤𝑡𝑑𝑋𝑐 (3.35) 

𝑌𝑐 → 𝑌𝑐 + 𝑤𝑡𝑑𝑌𝑐 (3.36) 

𝜃 → 𝜃 + 𝑤𝜃𝑑𝜃 (3.37) 

𝑠 → 𝑠(1 + 𝑤𝑠𝑑𝑠) (3.38) 

𝑏 → 𝑏 + 𝑊𝑏𝑑𝑏 (3.39) 

where 𝑤𝑡, 𝑤𝜃, 𝑤𝑠 are scalar weights and 𝑊𝑏 is a diagonal matrix of weights, one for 
each mode. In this thesis, no weights are given and the weights for the alignment 
algorithm in the searching part are set to identity.  
One of the main advantages of the active shape models is that applying a model to 
an image, it will deform until it converges, still though preserving a shape consistent 
with the training set. But in order to do so, limits have to be applied to the values of 
𝑏𝑘. Cootes in [28] suggests that a shape can be considered acceptable if the 
Mahalanobis distance 𝐷𝑚 is less than a suitable constant, 𝐷𝑚𝑎𝑥, say 3. This limit 
according to Cootes, satisfies almost all training examples when applied in Eq. [3.14]. 
As mentioned previously, b should lie within a hyperellipsoid about the origin. When 
b is updated in every iteration, plausible shapes may occur (𝐷𝑚 > 𝐷𝑚𝑎𝑥) so then, the 
point lies outside the ellipsoid. To correct this, b  should be rescaled so that it lies 
somewhere around an allowed ellipsoidal volume using the equation: 
 

𝑏𝑘 →  𝑏𝑘 ∙ �
𝐷𝑚𝑎𝑥
𝐷𝑚

�  (𝑘 = 1, … , 𝑡) (3.40) 

 

3.6 Multi – Resolution Active Shape Models 
Multi resolution active shape models are used to improve the efficiency and 
robustness of the classical ASM algorithm. This method begins by initialy searching 
the object in a coarse image and subsequently refining the location in a series of finer 
resolution images. As a result, the algorithm tends to be much faster and less likely 
to not converge. 
For every training image, a Gaussian pyramid is built. The base image (level 0) is the 
original image. Then, the image in the next level is created by applying firstly a 5x5 
Gaussian filter for the reduction of noise and after that doing sub sampling to obtain 
an image which has half the size of the original. Cootes in [30] suggests a filter that 
results from a convolution of two linear filters with values 1-5-8-5-1. Common 
methods used for resampling are bilinear or bicubic interpolation. Figure 3.15 shows 
a resampling of a face image in four levels.  
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Figure 3.15: Image Pyramid with 4 levels. The current level is equal to half of the 
image dimensions of the previous level (Milborrow, 2007). 

 
At the training stage, the statistical model of the gray level appearance is created 
along the normal to the points, for each of the image levels. Usually, the size of the 
profile normal is the same for each of the levels, so it makes sense that in the coarse 
image, information deduced is much more than the initial image (See Fig. [3.16]). In 
the coarse image, the movements of the points into a better position are much larger 
than the searching process in the initial image. Thus, reaching towards the search in 
the initial image, the movements are much smaller and the convergence time much 
less.  
 
  

Figure 3.16: Gray level appearance for a landmark point at different levels of the 
Gaussian pyramid (Self illustrated).  

 
One of the issues that emerge during the search process is to decide when the 
algorithm should converge for the existing level and move onto the next one. Cootes 
in [30] suggests that this could be achieved by recording the number of times the 
gray model has found its minimum (50%) within the central region of the profile. 
When a sufficient number of points (e.g. > 90%) produce a best fit within this central 
region (50%), then the algorithm is declared to have converged to that level (See 
Fig.[3.17]). Then, the current model is projected into the next image level and runs to 
converge again. When the convergence process is reached at the finest resolution, 
the search stops (See Fig. [3.18]).  
 

Level 0 (Initial image) 

Level 1 
 

Level 2 (Coarse Image) 
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Figure 3.17: (A) shows the profile sampled normal of the current pyramid level 
together with the central 50% of the positions (B) Grey level model of the current 
landmark point for the current pyramid level (Self illustrated). 

 
 

  
Initial After 2 iterations 

  
After 6 iterations After 8 iterations 

Figure 3.18: Multi resolution ASM search on a face (T.F.Cootes & C.J.Taylor,  2004). 

 

3.7 The Viola - Jones detector 
The Viola Jones algorithm is the first object detection algorithm proposed in 2001 by 
Paul Viola and Michael Jones [18]. Although it can be used (through training) to 
detect several objects, it was primary used to solve the problem of face detection.   

(A) 

(B) 

Central region 
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The method is based on simple features (see Fig. [3.19]) which are applied not on 
the original image but on what is called derivative image. One of the main reasons of 
using this method is that the feature based system operates much master than a 
pixel – based system.  
The Viola – Jones algorithm is restricted to three different kind of features. The first 
one is a two - rectangle feature whose value is the difference between the sum of 
pixels of two rectangular features. The regions have the same size and shape and 
are horizontally or vertically adjacent. Then, a three – rectangle feature, computes 
the sum within two outside rectangles, subtracted from the sum of the centre 
rectangle. Last but not least, a four – rectangle feature calculates the difference 
between the diagonal parts of the rectangles. According to the figure below, every 
feature is enclosed within a 24x24 detector, which means that a very large set of 
rectangles could be used, around 180,000. 
 

 

 

 

 

(A) (B) 
  

 
 

(C) (D) 
 
Figure 3.19: Example rectangle features shown relative to the detecting window. 
Two rectangle features are shown in ((A),(B)), (C) shows a three rectangle feature 
and (D) a four rectangle feature (Viola & Jones, 2001). 

 
Coming back to the definition of an integral image, any location 𝑥,𝑦 is equal to the 
sum of the pixels above and to the left of 𝑥,𝑦 and its expressed mathematically as: 
 

𝑖𝑖(𝑥,𝑦) = � 𝑖(𝑥′,𝑦′)
𝑥′≤𝑥,𝑦′≤𝑦

 (3.41) 

 
where 𝑖𝑖(𝑥,𝑦) is the integral image and 𝑖(𝑥′,𝑦′) the original image. 
 
The above formula could be explained with the following example: Consider four 
rectangles A,B,C,D. The sum of pixels within rectangle D can be computed by using 
all four points (Fig. [3.20]). The value that the integral image will have at location 1 is 
the sum of pixels in rectangle A. Then the value at point 2 is equal to the sum of 
pixels in rectangles A and B. Subsequently, the value at point 3 is equal to the sum of 
pixels in A, B and C. Last but not least the value at point 4 is equal to the sum of 
pixels in A, B, C and D.   
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Figure 3.20: The sum of the pixels within rectangle D is computed using all three 
rectangles (A,B,C) (Viola & Jones, 2001). 

 
The classifier is created by using a machine learning algorithm known as Adaptive 
Boost algorithm (AdaBoost) that selects from a set of features and a training set of 
positive and negative images, a small number of features used to train the classifier. 
Originally, this AdaBoost algorithm was used increase or to boost the classification 
performance of a weak learning algorithm. As mentioned previously, there are over 
than 180,000 rectangle features applied within a sub window. Thus, although 
calculating every feature is doable and quite effective, the same process for all 
features is quite expensive.  So the problem is how to find these features. 
AdaBoost combines a collection of weak classifiers to create a stronger classifier. A 
weak classifier in this algorithm is considered being a feature.    
 
A weak classifier ℎ𝑗(𝑥) consists of a feature 𝑓𝑗, a threshold 𝜃𝑗and a parity 𝑝𝑗 
indicating the direction of the inequality sign: 
 

ℎ𝑗(𝑥) = �
1, 𝑖𝑓 𝑝𝑗𝑓𝑗 < 𝑝𝑗𝜃𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� (3.42) 

 
with 𝑥 being a 24 × 24 pixel sub – window. 
 
 

Figure 3.21: Schematic description of a detection cascade (Viola & Jones, 2001). 
 
Furthermore Viola and Jones introduced an Attentional cascade which creates a 
cascade of classifiers for increasing detection performance and reducing 
computation time. It works by creating smaller classifiers which when applied, reject 
most of the negative sub – windows and keeps all positive. The meaning of the word 
“cascade” indicates that the process of detection has a tree search structure.   

T T T 

F F F 

1 2 3 Further Processing 

All Sub - windows 

Reject Sub - window 

1 2 

3 4 

A B 

C D 
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A positive result from the first classifier kicks in the second classifier and so on. A 
negative result would lead to rejection. The process is done by training classifiers 
using the AdaBoost algorithm and then setting a threshold to minimize the false 
negatives.  
Stages in the cascade are created by training the classifiers using AdaBoost 
algorithm and then setting the threshold to minimize false negatives (different 
threshold in every scale). Generally by default, AdaBoost algorithm generates a low 
rate error on the training data. The image below contains front faces of many 
students during a school trip to Italy. Applying the Viola – Jones algorithm on the 
image all of the faces that have a front view are detected.   
 

 
Figure 3.22: Result of the Viola Jones algorithm on an image with multiple faces. 
The faces detected are only frontal faces but not profile faces. That’s because the 
classifier was trained from front face images (Personal picture library, School Trip 
to Rome, Italy, 2005). 
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4  
Software 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter provides a detailed description of the functions written for the purpose of 
this master thesis. Within this framework, the implementation of the Viola / Jones 
algorithm for providing initial position to the face model is discussed. The input 
parameters, structures and classes are explained in Appendix A. The implementation 
was written in C++, using Microsoft Visual C++ 2010 Express compiler and OpenCV 
library. The source code was developed on a SonyVaio, VPC - Z1 model, i5 CPU at 
2.40 GHz, 64 bit system with 4 GB RAM.  
 

4.1 Functions definition 
 
• CvScalar aligning_pair_of_shape (CvMat *mat1, CvMat *mat2, vector<double> 

*weights, CvMat *aligned_data); 
 
Description: This function aligns a face shape to another reference shape based on 
the algorithm described in paragraph 3.3.2, graph 3.1. 
 
Input:  

mat1  : The coordinates of the first shape 
mat2  : The coordinates of the second shape 
weights : The weights for each one of the points  

 
Output: 

aligned_data : The aligned shape 
 
• void alignTrainingData (vector <CvMat*> *training_data, CvMat 

*mean_alighned_shape,  vector <CvMat*> *aligned_set); 
 
Description: This function aligns a number of training images.  
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Input:  
training_data : A vector containing the landmark coordinates of all training 
images.  
 

Output: 
mean_aligned_shape : The mean aligned shape or the Allowable Mean 
Domain. 
aligned_set : The aligned normalised shapes. 
 

• void mean_shape (vector<CvMat*> *aligned_shapes, CvMat 
*mean_aligned_shape); 

 
Description: This function computes the mean shape from a set of aligned shapes.  
 
Input:  

aligned_shapes : A vector containing the landmark coordinates points of all 
training images.  

 
Output: 

mean_aligned_shape : The mean shape. 
 
• void centerText (char* s); 
 
Description: This function centres and prints out some words, sentences or data 
that the user will give as an input argument. 
 
Input \ Output:  

aligned_shapes : A string given as an input in the function, printed in the 
system’s output window. 

 
• void print_modes (CvMat *EVal, CvScalar *eigenval_sum, vector<double> 

*modes); 
 
Description: This function creates a print table with three columns and indicates the 
most significant eigenvalues. First column contains the indices of the eigenvalues, 
second column their values and last column the percentage from the total variation 
each eigenvalue covers.  
 
Input \ Output:  

EVal : The eigenvalues of the covariance matrix derived from the aligned 
data. 
eigenval_sum : The sum of the eigenvalues.  
modes : Number of modes of variation and the equivalent most significant 
eigenvalues.  

 
• void GetGrayValue (IplImage *Image, CvMat *interval_X, CvMat *interval_Y, 

CvMat *Intensities); 
 
Description: This function gets the intensities of the interpolated points on the profile 
normal.  
 
Input:  

Image : The imported image 
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interval_X : The linear interval in x – direction across the normal   
interval_Y : The linear interval in y – direction across the normal   

 
Output: 

Intensities : The gray intensities for each of the interpolated points  
 
• void check_signed_zeros (CvMat *M); 
 
Description: In C++ the zero value could be either positive or negative. Therefore, in 
order to avoid having problems with some calculations, this function checks the 
matrix for any negative zeros and sets them to positive zero.  
 
Input / Output : The matrix to be checked. The function returns the same matrix but 
with just positive zeros  
   
• void get_gray_level_appearance (int nScales, vector<CvMat*> *matrices, 

vector<string>*dir_images,CvScalar nsamples, PyramidLevel 
*LabelPointsAppearance); 

 
Description: This function builds the gray level appearance around each landmark 
point and for each image level. 
 
Input:  

nScales : The number of image levels 
matrices : The landmark coordinates of the non aligned training images 
dir_images : The path where the images are kept. 
nsamples : Number of interpolated points defined on the profile normal (only 
for the one side of the profile normal).  
 

Output: 
LabelPointsAppearance : The gray level appearance of every landmark 
point, in each image level,  defined on the profile normal.   

 
• void GetInitialPosition (IplImage *image, CvMat *meanASD, CvScalar 

*InitialPosition, CvMat *InitialPos); 
 
Description: This function initially runs the Viola/Jones algorithm to detect the face 
in the search image and then tries to compute the initial pose parameters that will 
place the model within the image.  
Based on figure 4.1, two different cascades are used to approximate the initial 
position. The first one is for frontal upright faces and the other for the left eye. The left 
eye detector is used to shift the 𝑡𝑦 parameter downwards, because taking as 
translation parameters the centre of the frontal detector, it would place the face 
model quite high. Therefore, when attempting to bring the face model much closer to 
where the search face is, the centre of the eye detector was used. Based on figure 
4.1, the formulas derived for the approximation of the translation parameters are: 
 
For the tx direction: 
 

𝑡𝑥 = 𝑋2 − 𝑋1 (4.1) 
 
the ty is equal too: 
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𝑡𝑦 = 𝑌1 +
(𝑌4 − 𝑌1)

2
+

(𝑌4′ − 𝑌1′)
2

 (4.2) 

 
 
 
 

 
Figure 4.1: Mathematically extracting the initial position 

 
The rotation 𝜽 was set to a fix value of 2o because most of the faces have 
approximately the same orientation.  
 
For the scaling factor s the following simplified algorithm was used: 
 

Input: tx, ty, θ, coords_local_system, coords_image_system; 
Output: scale (s)  
Initialise: s = 30, scale increment = 0.01; 
 
for (infinite loop) 

coords_image_system = T(tx, ty, θ, s) * coords_local_system; 
Get_X_values = coords_image_system(:,1);     // (n x 1) dimensions 
If (Get_X_values > X2 – 30) break; 
s = s + scale_increment; 

end   

Algorithm 4.1: Scale definition 
 
Based on figure 4.2 and algorithm 4.1, the face model is produced initially in a scale 
of 30 and then increased by a 0.01 step till the x value of the shape gets larger then 
X2 – 30pixels. The offset of the detector window inwards by 30 pixels was defined 
empirically using different images. In most cases, the rectangle drawn outside the 
face was approximately around 30 to 50 pixels away. Figure 4.2 shows the result of 
the face model position and the initial pose parameters are: 
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TABLE 4.1 
Approximate Initial Values 

X0 Y0 Theta (θ) Scale (s) 
296.0000 283.0000 2 56.4959 

 
 

 
Figure 4.2: Initial position of the face model 

 
Input:  

Image : The searching image 
meanASD : The mean shape of the Allowable Shape Domain 
InitialPosition : The pose parameters used to take the model from its local 
coordinate system to the image system 
 

Output:   
InitialPos : The initial position of the model in the image coordinate system 

 
• void get_position (CvMat *model_shape, CvScalar *pose_shape_param, CvMat 

*pos_coords); 
 
Description: This function places the face model from its local normalised 
coordinate system to the images system (𝑖, 𝑗).   
 
Input:  

model_shape : The face model in its local normalised coordinate system 
pose_shape_param : The pose parameters (translation, rotation and scaling) 

 
Output: 

pos_coords : The model’s position in the image system 
 

• CvMat get_model_parameters (CvMat *shape_coords, CvMat *adjustments, 
CvScalar *pose_parameters, CvScalar *updated_pose_parameters, CvMat *P); 

 
Description: This function computes the shape parameters 𝑏 = (𝑏1,𝑏2, … , 𝑏𝑡)𝑇 of the 
first t  modes of variation, as a result of deforming the face model during the update 
of its points towards a better position in the image.     
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Input:  
shape_coords : Coordinates of the face shape model in its local normalised 
coordinate system 
adjustments : The adjustments of the current model shape to a new updated 
shape 
pose_parameters : The pose parameters before the shape is updated 
updated_pose_parameters : The new updated pose parameters after 
approximating the current shape to a new updated shape  
P  : The first t eigenvectors  
 

Output: The function returns the shape parameter vector 
 
• void check_shape_parameters (CvMat *eigen_values, CvMat *b); 
 
Description: This function checks if the shape parameters are within the Allowable 
Shape Domain and if not, hard limits are applied to place the parameters on the 
border of the domain.   
 
Input:  

Eigen_values : The total number of eigenvalues 
b : The model parameter vector 
 

Output: 
b : Same matrix b is given as an output but corrected whenever is needed   
 

• CvMat Apply_Model (IplImage *searching_image, int nScales, CvMat *x_current, 
CvMat *model_position, PCAParam *Statistics, CvScalar *num_model_samples, 
CvScalar *pose_parameters, int TImage_samples, PyramidLevel 
*LabelPointsAppearance); 

 
Description: This function applies the face model on the image and starts the 
iteration process. 
 
Input:  

searching_image : The search image 
nScales : number of image scales used   
x_current : The coordinates of the face model within its local coordinate 
system 
model_position : The coordinates of the shape model in the image system 
Statistics : It is a variable name of type PCAParam and it contains all the 
statistical information of the aligned training data. That is the eigenvalues, 
eigenvectors, mean aligned shape, number of modes, generated new shapes 
num_model_samples : number of interpolated points on the profile normal of 
the model points placed in the searching image (the number concerns only 
one side of the profile) 
pose_parameteres : Initial pose parameters used to place the face model in 
the image system 
TImage_Samples : Number of interpolated points on the sample profile 
LabelPointsAppearance : The gray level appearance of the landmark points 
in every image level  
 

Output: A matrix containing the final coordinates of the face model, fitted as best as 
possible on the face in the image 
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• void read_txt_face_parts (string path, vector<string> *parts_name, 
vector<string> *parts, vector<int> *minVal, vector<int> *maxVal); 

 
Description: This function reads the text file with the name face_parts.txt. The 
figure below shows the content of this file: 
 

 
Figure 4.3: text file of the parts of the face 

  
The file name (face_parts.txt) as well as the format of the file (fixed length) must not 
be altered. The reason for this is that the program classifies for every line  the name 
of the face part, the minimum and maximum index of that part and also specifies if it’s 
a close contour of not. Nevertheless, it makes sense to use this function when the 
range and index of landmark points per face part is known.  
If a new data set of landmark points is given, where the user does not know which 
range of points corresponds to which part of the face, then it is not recommended to 
use this function. It is used to fix the normals to the face contour.   
 
Input:  

path : The path where the file face_parts.txt is located 
 
Output: 

parts_name : A vector containing the names of the face parts 
parts : A vector containing the last column of the above text file which 
determines if the face part is close or open contour  
nsamples : Number of interpolated points taken on the profile normal 
minVal : Vector containing the starting index value of each parts of the face 
maxVal  : Vector containing the end index value of each part of the face 

 
• void plot_aligned_data (vector<CvMat*> *aligned_data, CvMat 

*mean_aligned_shape); 
 
Description: This function plots the aligned shapes and the mean shape on top of 
them.  
 
Input:  

aligned_data : A vector containing the coordinates of the aligned shapes 
mean_aligned_shape : The mean normalised aligned shape   

 
• void plot_variations (vector<CvMat*> *variations); 
 
Description: This function plots different shapes produced by varying the most 
significant eigenvalues. 
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Input:  
variations : A vector containing the landmark coordinates of the produced 
shapes 
 

• void plot_object (CvMat* variations, IplImage *search_image); 
 
Description: This function plots the final face shape model on top of the search 
image   
 
Input:  

variations  : A matrix containing the final face model coordinates 
 

Output: 
 search_image : The searching image with the face model fitted on top 
 
• void InvMatMahalanobis (CvMat *Covariance, CvMat *InvCov); 
 
Description: This function finds the inverse of the covariance matrix used in the 
computation of the Mahalanobis distance. Due to strong linearities between the 
interpolated points on the profile normal of a point, the covariance matrix is not 
positive definite and not full rank (at least most of the times). This could lead to 
inaccurate results given by the Mahalanobis distance and a zero value can only 
mean that the profile match is perfect.  
This, according to some properties of the inversion of a matrix is not acceptable. 
Thus, a method used to solve this problem is as follows: 
 

1. Assume that A is a problematic covariance matrix. Perform a spectral 
decomposition so that 𝐴 = 𝑄Λ𝑄𝑇 where Λ is a diagonal matrix containing the 
eigenvalues  
 

2. Set all the small or negative elements of the Λ matrix to a very small positive 
number (in the project it was set to DBL_EPSILON) and create a new 
diagonal matrix Λ′ 

 
3. Reconstruct A from 𝐴 = 𝑄Λ′QT 

 
The new covariance matrix A is now full rank and positive definite. 
 
Input:  

Covariance : The covariance matrix of the current landmark point 
 
Output: 

InvCov : The inverted covariance matrix  
 
• void Calc_Covar_mean_mat (vector<CvMat*> *obs_vector, int nsamples, CvMat 

*Covariance, CvMat *mean); 
 
Description: This function calculates the covariance matrix of every landmark point 
and also the mean normalised gray level intensity of the point taken as an average 
from all the training examples. 
 
Input:  

obs_vector : A vector of matrices containing the normalised intensities of a 
landmark point throughout all images   
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nsamples : Number of training examples  
 

Output: 
Covariance : The covariance matrix of a point 
mean : A column matrix containing the mean normalised intensity of a point 

 
• void PCA (vector<CvMat*> *aligned_shapes, CvMat *aliged_mean_shape , 

PCAParam *ShapeStat); 
 
Description: This function applies Principal Component Analysis on the aligned 
training data.   
 
Input:  

aligned_shapes : A vector containing the aligned shapes 
aligned_mean_shape : The mean aligned shape  
 

Output: 
ShapeStat : This is a variable of the class type PCAParam that contains all 
the statistical information concerning the aligned training data. These are the 
eigenvectors and eigenvalues of the covariance matrix derived from the 
aligned data, mean aligned shape, number of modes, most significant 
eigenvalues and new approximated shapes  

 
• void convert_N2_to_N1 (CvMat *input_mat, CvMat *output_mat); 
 
Description: Converts the coordinates layout from a  𝑛 × 2 order to a 2𝑛 × 1 form. 
 
Input:  

input_mat : The given  𝑛 × 2 matrix 
 

Output: 
output_mat : The resulting 2𝑛 × 1 matrix 

 
• void convert_N1_to_N2 (CvMat *input_mat, CvMat *output_mat); 
 
Description: Converts the coordinates layout from a 2𝑛 × 1 order to a 𝑛 × 2 form. 
 
Input:  

input_mat : The given 2𝑛 × 1 matrix 
 

Output: 
output_mat : The resulting 𝑛 × 2 matrix 

 
• void convert (string input_file, CvMat *ma); 
 
Description: This function converts the initial coordinates in text format to a CvMat 
form.   
 
Input:  

input_file : A string specifying the path to the text file where the coordinates 
of the current example image are saved. 
 

Output: 
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ma : The coordinates of the training image converted into a CvMat form. 
 
• void dist (CvMat *m, CvMat *output) 
 
Description: This function computes the Euclidean distances of a point with respect 
to all other points in the training image. 
 
Input:  

m : A matrix containing the landmark coordinates of the shape in a 𝑛 × 2 form 
 

Output: 
output : A matrix (𝑛 − 1) × 𝑛 dimensions, where each column corresponds to 
the distances of a point to all other points 

 
• double var_of_pts (CvMat *pts) 
 
Description: This function computes the variance of every point using the formula in 
Eq. [3.5]. 
 
Input: 

pts : A row vector containing the distance of the current point to its next point 
in all training images  

 
Output: The variance of this distance over the training set  
 
• void compute_Weights (vector <CvMat*> *training_data, vector <double> 

*weights) 
 
Description: This function computes the weights of each landmark point in the 
training set using Eq. [3.5]. 
 
Input:  

training_data : A vector containing the landmark coordinates for each one of 
the training images 
 

Output: 
weights : A vector with the weights of each landmark point 

 
• CvMat DiagMatrixWeights (CvMat *arg) 
 
Description: This function creates a diagonal matrix (2 × 𝑛, 2 × 𝑛) with the diagonal 
elements being the point weights. 
 
Input:  

arg : A matrix (𝑛 × 1) containing the weights of the points 
 

Output: A weighted diagonal matrix 
 

• void COG (vector<CvMat*> *matrices, vector<CvMat*> *cog) 
 
Description: This function translates all the training images to their centre of gravity. 
This is considered being the first part of the normalization process. 
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Input:  
matrices : A vector containing the landmark coordinates for each one of the 
training set  
 

Output: 
cog : A vector containing the translated landmark coordinates of each training 
images 

 
• void scaling (CvMat *InitialMeanShape, CvMat *MeanScaleShape) 
 
Description: This function scales the reference shape so that the mean distance 
between  the centre (COG) of the shape and all other points is equal to √2 (second 
step of the normalization). 
 
Input:  

InitialMeanShape : The reference translated shape to be normalised 
 

Output: 
MeanScaleShape : The scaled reference shape 

 
• void GrayLevelAppearance::GetContourNormals (string type, CvMat 

*Contour_Points, CvMat *ContourNormals) 
 
Description: This function calculates the contour normals of the face shape. It is a 
general function which could also be used for calculating the normals of close or 
open contour objects, regardless from faces. The next function calls the current 
described function for calculating the normals for each part of the face separately.  
 
Input:  

type : A given character which is either “c” for close contour or “o” for open 
contour. The computational difference between these two is that in the close 
contour case, the direction of the whisker of the first point is defined from the 
difference of the second point and the previous last point of the contour. On 
the other hand, in case of an open contour, the whisker direction is defined 
only from the next point and the current point. 

 
Output: 

ContourNormals : A 𝑛 × 2 matrix containing the normals to the points in the 
current shape 

 
• void GrayLevelAppearance::GetContourNormalsFace (string path, CvMat 

*Contour_Points, CvMat *ContourNormals) 
 
Description: This function calculates the normals to the face’s contour. In is often 
the case where the range of points corresponding to each part of the face is 
unknown. The next point minus the previous point technique is not that “valid” for 
example in cases where the normal on the first point of the eyebrow is calculated 
using the last point of the outer face (compare results between figures [4.4a] and 
[4.4b]).  
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Figure 4.4a: Point 2 whisker direction by 
using points 1 and 3 

Figure 4.4b: Point 2 whisker correction 
by using the points 3 and 4 

 
The above figures show how the direction of the whisker at point 2 is affected from 
the previous and next point. As you can see, the right eyebrow is considered being a 
close polygon, thus the next point of the current point 2 should be 3 and the previous 
4. Taking this into account, the “corrected” direction of the whisker can be seen in 
Fig. [4.4b].   
 
Input:  

path : The path directory to the text file face_parts.txt  
Contour_Points : The landmark coordinates of the current image  

 
Output: 

ContourNormals : A 𝑛 × 2 matrix containing the normals of the face in the 
current image 

 
• void GrayLevelAppearance::linear_intervals (CvMat *Contour_Points, CvMat 

*ContourNormals, CvMat *intervalx, CvMat *intervaly, CvScalar *samples) 
 
Description: This function computes the linear intervals on the profile normal 
(whisker) with a step equal to one pixel. 
 
Input:  
 Contour_Points : The landmark points in the current image 

ContouNormals : The normals to the landmark points 
samples : Numbers of samples taken on the whisker. The number of points 
should involve only one direction of the whisker. Thus, the total number of 
interpolated points will be equal to 2 × 𝑛 + 1 
 

Output: 
intervalx : The linear intervals in the x - direction  
intervaly : The linear intervals in the y - direction  

 
• void GrayLevelAppearance::GetDerivatives (IplImage *src_image, CvMat 

*intervalx, CvMat *intervaly, CvMat *derivatives_norm, double samples) 
 
Description: This function calculates the derivatives and normalised derivatives of 
the gray level appearance around each landmark point based on chapter 3, 
paragraph 3.4.3. 
 
Input:   

4 
2 

3 

1 1 

2 

3 

4 
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src_image : The input image from which the gray intensities of the profile 
normals will be derived 
intervalx : The linear intervals in the x - direction  
intervaly : The linear intervals in the y - direction  
samples : Numbers of samples taken on the whisker. The number of points 
should involve only one direction of the whisker. Thus, the total number of 
interpolated points will be equal to 2 × 𝑛 + 1 
 

Output: 
derivatives_norm : A (2 × 𝑛 + 1) × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑏𝑒𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 matrix containing 
the normalised derivatives. Each column corresponds to one landmark point  

 
• void CheckifImageGrayScale (vector <string> *training_images) 
 
Description: This function converts the 24bit training images to 8bit gray scale 
images in case they were not inserted in this form initially.  
  
Input / Output:  

training_images : A vector containing the names of the training images. The 
output of this function is the convention of the RGB images into gray scale 
images.   

 
• double me17 (CvMat *LandmarkPoints, CvMat *searchPoints) 
 
Description: This function computes the me17 error described in paragraph 5.1.    
 
Input:  

LandmarkPoints : A 𝑛 × 2 matrix containing the fixed landmark coordinates 
of the face  
 
searchPoints : A 𝑛 × 2 matrix containing the resulting coordinates of the face 
model  emanated either from the initial placement of the face model in the 
image or after the convergence of the model. 
 

Output: 
The me17 value of the face fit (in pixels) between the fix landmark points and 
the points coming from the face detector or the ASM search result.  
 

• vector<string> GetPyramidImages (int nScales, vector<string> *TrainingImages) 
 
Description: This function produces the image pyramid of the training set. 
 
Input:  

nScales : Number of pyramid scales to be created  
searchPoints : A vector containing pointers to the training images in their 
initial dimensions. 
 

Output: A vector containing pointers to the pyramid images. 
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5  
Results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter presents the experimental part of this master thesis. It starts by 
introducing the method used to measure the quality of the model fit in the image, 
known as me17. Then, the initial placement of a face model on a set of images 
selected randomly from the MUCT dataset, applying the Viola / Jones face detector 
and the quality of fit is seen. Subsequently, using Cootes online data set (training set) 
provided in sub section 5.4.1, the process of alignment, capturing the statistics of the 
aligned data and applying the face model on a coarse search image is explained. 
Moreover, a comparison will be shown of the different me17 fits using face models 
derived from unmodified and modified raining images (adding Gaussian noise and 
dislocating the landmark points).       
  

5.1 The me17 measure 
Christinacce in [4] introduced the me172 measurement, designating the quality of fit 
of a face model in an image, described by the following formulation: 
 

𝑚𝑒 =
1
𝑛𝑠
�𝑑𝑖

𝑖=𝑛

𝑖=1

 (5.1) 

  
where: 
 
𝑑𝑖 are the point to point Euclidian distances,  
s is the distance between the eye pupils and  
n is the number of landmark points used to describe this error. The result is in pixel 
units.  
  

                                                
2 The reason it is given the name me17 is because 17 points are used to estimate the overall fit. 
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Keep in mind that this measurement is ambiguous due to the fact that it covers some 
of the inner part and none of the outer part of the face. This, in some cases could 
lead to a somehow unreliable result, because the inner part might not have 
converged as well as the outer part and vice versa. Figure [5.1] illustrates the relation 
between the me17 points of the face model respectively to the equivalent ones in the 
face image.  
   
 

Figure 5.1: The symbol “   ” indicates true location and “x” predicted location 
 
Figure [5.2a] shows the position of the 17 points in the image and figure [5.2b] the 
index of these points.  
 

 

 

Figure 5.2a: The me17 Landmarks position 
[Milborrow] 

Figure 5.2b: The me17 
Landmark index [BioID set] 
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5.2 Face Configuration of the MUCT dataset 
The face images, provided by the online database, were captured from five different 
cameras with a configuration shown below:  
 

 
Figure 5.3: The five cameras and their position with respect to the face 

 
The utilization of the training data emanated only from camera a. Specifically, 
cameras b and c were not good enough to be used due to obscured landmarks, thus 
they were excluded. The images have a resolution of 640 x 480. As you can see from 
the above figure, camera was not located to the left since it could be approximated 
by mirroring the image from the right. In total, 76 landmark points where measured 
manually in each image from a human landmarker and then checked from a third 
person. The image filenames have the form “i000qa-fn.jpg”  where:  
 

• i is a prefix in all images 
• 000 is the ID increment 
• q is the lighting set (lookup table in http://www.milbo.org/muct/muct-

details.html) 
• a is the camera view (see Fig. [5.1]) 
• f stands for female and m for male 
• n is for no glasses and g for glasses 

 
For example, image “i007qa-fn.jpg” is the 7th image in the dataset, with lighting set q, 
captured from position a, gender female and wears no glasses.  
For more technical information concerning the lighting configuration and the 
advantages of this dataset over some other datasets refer to [21]. 
 

5.3 Face detection on MUCT images 
The Viola – Jones algorithm is robust enough to detect faces but it is also important 
to see how it could be used to approximate the position of a face model in the search 
image. This was established and explained in the previous chapter and here some 
experimental results are provided.  
Six upright frontal faces where chosen randomly from the MUCT database, each one 
with different external characteristics. These different characteristics could be 
distinguished between people with or without hair, wearing glasses or not, having a 
beard or not etc. In Fig. [5.4] the detector has situated the face model in a very good 
initial position.  
All parts of the face model are placed very close to the edges of the object. On the 
other hand, the position of the eyebrow, eye and nose in Fig. [5.5] are placed quite 
close to the face image, but the outline of the face is further away from it.  

http://www.milbo.org/muct/muct-details.html
http://www.milbo.org/muct/muct-details.html
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Figure 5.4 Figure 5.5 Figure 5.6 

 
In figure [5.6] the face model is been placed quite well, similar to figure [5.4]. 
Nevertheless, using this image as a search image could result a bad fit because of 
the constant gray intensities around the beard. However, training the gray level 
appearance using images with similar complexities and beard presence, the face 
model could most probably converge. Despite this comment, the initial approximation 
is very good.  
Continuing with Fig. [5.7], the face model is well placed on the outer part of the face, 
nose and lips but the eyebrows and eyes are situated further down from where they 
should be. Regardless of this problem, the particular face couldn’t be used as a 
search image since the gray level appearance of the training faces does not contain 
any headscarf information (or very limited) and secondly because the area around 
the face has a constant intensity, hence  no better positions could be estimated.  
In figure [5.8] the face detector works quite well but the eye detector fails to provide a 
good initial position of the face model. As a result, the eye detector recognises the 
mouth part which automatically shifts the face model further down. Figure [5.9] 
illustrates this. 
Last but not least, in Fig. [5.10] the face model is placed quite well in most parts 
except the eye part.  
However, that wouldn’t be a problem because the ASM method runs in a 
multiresolution approach which means that for a suitable profile length the eye part 
could be shifted to a better position. 
 

   
Figure 5.7 Figure 5.8 Figure 5.9 

 

i449wa-fn 

i010qe-mn 

i017re-mg i017re-mg 

i007qa-fn i016se-mn 
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Figure 5.10 

 
The chart below shows the me17 measurement for all six images. It is clear that the 
best initial position is located in the third image with a me17 of 0.084. Keep in mind 
that the me17 result in all cases is affected from the position of the eye pupils. This 
means that if the rest of the model is placed quite well but the eye pupils are far away 
from the correct position, then the me17 measure will give an ambiguous result. 
Taking a close look at the me17 result of the i017re-mg image, the error is quite high 
due to large offset the eyes of the face model have from the real eyes position. At the 
same time, having this large offset in the inner part of the face, the outer part fit is 
quite good. 
 

 
Figure 5.11: The me17 fit for initial face model position 

 
On the other hand, the me17 fit measure is quite good in the i016se-mn image due to 
the eye position, but the external part does not fit as well.  
Overall, in the first three images, the error is kept in low levels because of the very 
good eye position and at the same time the outer part is not that good. On the other 
hand, the error is large in the rest of the images due to bad eye position but the outer 
part is good. The table below gives the initial pose parameters and the me17 quality 
fit for each of the aforementioned images. 
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Table 5.1 
Initial Pose Parameters and the me17 fit 

Images 
Initial Pose Parameters 

me17 fit Xt (pix) Yt (pix) theta (deg) scale  

i007qa-fn 285 440 2 45.3478 0.0895 

i016se-mn 246 398 2 52.0467 0.0869 

i010qe-mn 221 410 2 46.3776 0.0840 

i449wa-fn 323 468 2 40.1987 0.1733 

i017re-mg 283 392 2 47.9274 0.2756 

i425wa-mn 314 408 2 43.2882 0.1442 
 

5.4 Applying the Active Shape Model on Cootes data 

5.4.1 The training data 

Cootes online data set contains 24 images in different moods with 68 landmark 
points measured per image. The dimension of the images is 640x480 as shown 
below. 
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Figure 5.12: Training set containing 24 images 

 

5.4.2 Aligning the training set 

First part of the process involves the alignment of the training faces. Figure [5.13a] 
shows all the contour faces misaligned and then their alignment in figure [5.13b]. The 
algorithm used for the alignment process is referred in graph 3.1. 
Figure [5.13a] shows a “cloud” of contour faces coming directly from the training set 
and represented with a green line. Figure [5.13b] on the other hand illustrates the 
aligned faces, with a red line on top representing the mean face. The alignment 
procedure converged after 3 iterations.  
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Figure 5.13a: The training set before 
alignment 

Figure 5.13b: The training set after the 
alignment 

 
 

5.4.3 Capturing the statistics of the aligned data 

After the alignment, PCA was applied on the aligned faces and the results are given 
in the table below. For the calculation of the covariance matrix, corresponding 
eigenvectors and eigenvalues the algorithm in Appendix C was used. The reason for 
this is because the number of training samples is less than the coordinates 
(2*68points = 136points > 24 images).  
Table 5.2 shows the most significant eigenvectors listed in descending order, 
covering 97% of the total variation of the training set. From all seven eigenvalues, 
only the first three express the greater part of the variation and the rest a significantly 
smaller part.  
 

TABLE 5.2 
Most significant Eigenvalues of the Covariance matrix derived 

from Cootes training set 
  

Eigenvalue index Eigenvalue Total variance (%) 
𝝀𝟏 0.4304 65.01 
𝝀𝟐 0.0918 13.86 
𝝀𝟑 0.0507 7.66 
𝝀𝟒 0.0326 4.92 
𝝀𝟓 0.0232 3.51 
𝝀𝟔 0.0124 1.87 
𝝀𝟕 0.0042 0.63 

 
Figure [5.14] shows the model parameters, defined as �𝜆𝑖  respectively to their x 
square distribution values. It is clear that most of the variations are indicated in the 
first 7 model parameters and the rest are concentrated very close to each other.  
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Figure 5.14: The chi square distribution of the model parameters 

 
Figure [5.15] shows the first two principal components 𝑏1, 𝑏2 together with the aligned 
training examples, each represented with a single point. All these points lie, in what 
was defined in the previous chapter, as Allowable Shape Domain and the centre of 
this domain is the origin of the two most significant principal components. What is 
shown is that these two parameters could be considered being linearly independent 
due to the way the points are distributed within the domain. Dependency between 
these two parameters could result the generation of “illegal” shapes.  
 

 
Figure 5.15: Plotting b1 against b2 

 
New shapes produced from Eq. [3.12] and [3.13] are shown below: 
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Figure 5.16: New face models build by using the most significan eigenvalues 

 
For each variation mode, three different shapes were created with a maximum 
variability of ±𝜆𝑖. For the  first mode, the generated shapes have a side rotation, 
capturing the variability of faces with a side view. The second mode of variation 
creates an elongated face, stretched outwards from its upper and lower part. It is 
clear that this mode captures the variation effecting the outer part of the face. Third 
and fourth modes vary in the mouth part, affecting the opening and closing of the 
mouth. The fifth mode stretches the mouth from both sides as it tries to create a flat 
smile. The sixth mode creates small movements of the jaw from left to right direction. 
Last but not least, the seventh mode effects the size of the lips by a small amount.  
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5.4.4 Detection and Searching 

Last step of the procedure involves placing the derived face model from its local 
coordinate system to the image’s system in order to start the iteration process 
towards face convergence. The images on the left column (below) show the result of 
the Viola – Jones face detector together with the initial placement of the face model. 
The results of the Active Shape Model approach are seen on the corresponding right 
column.   
 

Image 1a Image 1b 

  
Image 2a Image 2b 

  
Image 3a Image 3b 

  
Image 4a Image 4b 



56 
 

  
Image 5a Image 5b 

  
Figure 5.17: The images on the left show the initial position of the face model using 
the Viola Jones algorithm and on the right, the equivalent model fit. 

 
The input parameters required for the initialization searching process, were defined 
through testing and the values given are: model profile = 5; search profile = 9; 97% 
maximum described variation; 2 image scales. Theoretically, the initial position of the 
face model in all images is good enough not to require many iterations. Because 2 
pyramid levels are used, when the model converges from the coarse image it should 
then be rescaled to fit the face in the initial image. The model would change image 
scale when 95% of all points lie within 50% around their central position. In case the 
model has not converged, a number of 400 iterations are set in the coarse level. The 
size of the Allowable Shape Domain, 𝐷𝑚𝑎𝑥 was set to 0.8.  
The results for the first and second image are quite good, regarding the inner part of 
the face. The outer part showed a lot of fluctuation and couldn’t remain steady. What 
is intriguing is the fact that after numerous iterations the inner part wouldn’t change, 
though the position of the points in the outer part fluctuated. Therefore, in order to 
check if there is enough room for improvements, all 400 iterations where executed.  
For the second image, the model fit would improve until 180 iterations but after that it 
would start deviating rather than improving. Moreover, images 3, 4 and 5 have 
visually the best fit from the rest although the me17 contradicts this view.  
According to table 5.3, images 2 and 4 have the best fit, though this could be visually 
true for image 4 but not for image 2. Furthermore, while the inner part of images 1 
and 2 has converged quite well, the outer part hasn’t, though the me17 results are 
quite good. Generally, if no hard limits where applied on the size of the Allowable 
shape domain, the movement of the points would be very ambiguous and the degree 
of freedoms quite high. For image 3, the size of the domain had to be changed 
because with the value of 0.8 the model would fail to converge. Given the value 1, 
the model would successfully fit.  
It is still under thoughts why would that specific image need a larger domain for the 
updated shapes while all other images, coming from the same dataset converged 
using the same domain size.  
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TABLE 5.3 
ASM Results 

 

Image 
Pose Parameters 

Iterations 
cοarse image Dmax 

Initial 
me17 

Final 
me17 Xt Yt 

Theta 
(θ) 

Scale 
(s) 

1 391 230 2 71.9064 400 0.8 0.1350 0.0317 

2 423 223 2 68.8257 180 0.8 0.1590 0.0251 

3 395 256 2 69.2854 150 1 0.0893 0.0354 

4 390 257 2 69.8559 200 0.8 0.1293 0.0196 

5 366 194 2 62.1450 200 0.8 0.1471 0.0442 
 
The graph below shows the me17 fit of the initial face drawn with a blue line and the 
me17 fit after convergence (red line). The blue line, as it is expected, has large 
values and also a large variation between images. After convergence, all me17 fits 
are more or less on the same level and obviously have smaller values compared to 
the initial results.  
 

 
Figure 5.18 

5.5 Adding noise during training  
Data provided by Cootes contained training images exempted from noise and other 
disturbances as well as landmark points measured with great accuracy. It would be 
interesting to see how a model could be built and applied on a face image using 
perturbed images or data. This means adding noise to the training images or 
modifying the position of the landmark points by a small random number. As a result, 
the gray level appearance around each landmark point and also the variability of the 
data will be disturbed. Both cases will be examined.  
The noise added to the training images was Gaussian noise with a mean value of 
zero and a variance of 0.0008. Experimenting with larger variance started to create 
images with no more strong edges and therefore pointless to try and build the gray 
level appearance around each landmark point. The fitting results can be seen from 
table 5.4. It is clear there is a large difference from the results in table 5.3.   
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First of all, the number of iterations in both cases is the same except in the first and 
last image. Secondly, the size of the allowable shape domain had to be modified for 
every image, otherwise the process would fail.  
The explanation for this is still under thought so no clear answer can be given. What 
is interesting to mention is that these Dmax values defined experimentally are specific. 
Increasing or decreasing the size of the predefined domain will lead to a failed search 
process. The ideal situation would be to have a fixed size of the shape domain and 
achieve a good result for every image based on this fixed size. The initial thought 
was to use the same number of iterations and domain sizes as mentioned in table 
5.3 to compare the fit quality of a model trained from the initial images and then from 
the noisy ones.   
 

TABLE 5.4 
ASM Results using Noisy Training Images  

 

Image Iterations course 
image Dmax Final me17 

1 148 0.8 0.0202 

2 180 0.5 0.0384 

3 150 1.8 0.0508 

4 200 1.5 0.0556 

5 400 0.8 0.0498 
 
The second modification was to maintain the initial training images unchanged and 
simply adjust the displacement of the landmark points so as to increase the variability 
of the face models. This was achieved by adding a random number to the existing 
landmark coordinates, within a range of 0-1. Table 5.5 gives the searching results for 
each image. In this case the number of iterations and domain sizes remain the same 
as in table 5.3. 
 

TABLE 5.5 
ASM Results from randomly modified Landmark points  

 

Image Iterations course 
image Dmax Final me17 

1 400 0.8 0.0647 

2 180 0.8 0.3845 

3 150 1 0.0323 

4 200 0.8 0.0233 

5 200 0.8 0.0699 
 
The graph below illustrates the quality of fit between the initial results shown in table 
5.2 and the modified results from tables 5.3 and 5.4. As it can be seen, training 
images forced by Gaussian noise provide results with a quality of fit very similar to 
the unmodified data.  
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Unfortunately, the number of iterations and also the size of the allowable shape 
domain had to be changed in the case of the Gaussian noise, otherwise the search 
would fail. Therefore, the comparison between these two approaches wouldn’t work 
using the same property values. The reason why the noisy training images would 
force the allowable shape domain to fluctuate that much, is still under thoughts. Even 
increasing the maximum number of iterations and maintaining fixed the size of the 
domain, wouldn’t make any difference. Consequently, the convergence of a face 
model, built from noisy images is pretty much dependant on the size of the domain 
rather than the quality of the gray level appearance around each landmark point.  
The me17 measurement of a face model, created firstly from the initial images and 
then by modified landmark points, is very close for images 1 and 5, almost coinciding 
for images 3 and 4 and very large for image 2. It is clear that even changing the 
displacement of the landmark points by a random number, the results are 
comparable, although in image 2 these small changes caused a steep change of the 
quality of the fit.     
 

 
Figure 5.19 
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6  
Discussions and Conclusions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.1 Discussions 
This master thesis involved detecting faces and fitting a trained face model on the 
detected face using a multiresolution Active Shape Model approach. As described 
previously, although the technique works quite well, improvements and proposals 
could be made, such as:  
  
• Automatic labelling of faces 
 
Creating a fully automated system to measure corresponding landmark points from a 
set of training images without failures, is still under development. Large 
improvements have been made towards this direction but still nothing significant. As 
the number of training images increase, measuring manually landmark points would 
be very time consuming and off course not accurate enough. It is important, points 
measured on the face to be placed precisely. Misplacing a landmark point may 
generate a face model which is distorted at that specific position. If there is noise in 
the images, the automatic system might fail to accurate place the landmark point. 
According to Cootes in [26], known points found could be set to one and the rest to 
zero. It is still possible to build reliable face models even if only a very small number 
of points is missing from the training set.      
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  
• Choosing correct training examples 
 
For the comparison of landmark points, it is essential for all training faces to be 
accurately placed within their image. Typically, data alignment is important for 
bringing the trained shapes to a common coordinate system, so as to achieve a 
similar normalised size. In addition, the chosen training images should have similar 
intensities around the facial features. Moreover, the example images used for 
constructing the face model should contain the variability of the search face.   
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For example, frontal upright faces that look directly at the camera don’t have much 
variation, thus the training faces should be similar. If there are training faces with side 
variation or variation of some facial parts, then they should be truncated because 
only a very small part of the total variation would be explained. On the other hand, 
using a large number of training images expressing the same variation is not 
reasonable enough, therefore it’s better to train a model covering any expected 
variation.   
 
• Using 24 bit images 
 
The ASM method was applied on 8 bit training images. Nevertheless, the same 
process could be realized on 24bit images too. In this case, the gray scale 
appearance of every landmark point would be expressed by a (3 × 𝑛) × 1 vector, 
where 𝑛 is equal to the number of interpolated points on the profile normal. For every 
channel, the gray level intensity is extracted and placed into the vector. Therefore, 
the profile matching is then to be done using all 3 channels simultaneously. Main 
disadvantage of this approach is that it is computationally more expensive, especially 
when a multiresolution ASM is used.    
  
• Having a small number of training examples 
 
It is often the case where there are fewer training examples 𝑁 than landmark 
coordinates 2𝑛. In this situation no more than 𝑁 − 1 degrees of freedom in the model 
are allowed and the eigenvectors of the 2𝑛 × 2𝑛 covariance matrix can be calculated 
from a smaller 𝑁 × 𝑁 covariance matrix. Thus, using the method subject to Appendix 
C, the eigenvectors of the equivalent nonzero eigenvalues can be computed.  
 
• Using 2D profiles 
 

 
Figure 6.1: (left image) 1D profiles created 
through the computation of the normals to the 
shape boundary and the 2D profiles (right 
image) defined using a square region around 
each landmark point (Seshadri & Savvides, 
2009) 

 
According to Milborrow in [23], using 2D profiles rather than 1D could increase the 
quality of fit as well as the convergence time. Matching 2D patches could rise the 
probability of minimizing a given energy function rather than a simple Mahalanobis 
distance (see Fig. [6.1]). 
                                                           
• Updating the Pose and Model Parameters 
 
Updating pose and model parameters is an important factor for the convergence 
method, although significant improvements have been made.   
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Choosing ideal weights for each of the landmark points may increase the confidence 
of their displacement towards a better position. Various scientists have introduced 
and developed their own weight method to check the displacement confidence of the 
points. Within this thesis, all weights except the ones calculated for the alignment of 
the training faces, where set to unity.  
The experimental results could probably be improved if the confident of each point 
was known. Specifically, images where the face model failed to provide a good 
outline fit, could be improved using weights.   
Moreover, the limit applied on the model parameters to maintain model’s shape, 
proposed by Cootes in [25] is:  
 

𝑏 → 𝑏 +𝑊𝑏𝑑𝑏 − 𝑘𝑏𝑊𝑏𝑏    (0 < 𝑘𝑏 < 1) (6.1) 
  
This would give more weight to shapes that are closer to the mean shape and less to 
the ones which are more deformed. On the other hand, applying these limits might 
not provide good solution between the face image and the model face. Thus, in this 
case it is preferable to use the fix limits introduced in Eq. [3.40]. Milborrow in [23] 
applies the fix limit approach too. Cootes in [32] suggests that after updating the 
model shape, weights should be given as to the quality of the update for each point. 
If a point is not moving in the correct direction, the weight should be decreased else 
otherwise. The formula is as follows: 
 

𝑤𝑖 =
1

2 + |𝑑𝑋𝑖|2
 (6.2) 

 
where |𝑑𝑋𝑖| is the adjustment correction in both x and y direction, of the point i.  
 

• Appling PCA on gray level intensities to find the desired movements 
 
This method involves modelling the gray level appearance around each landmark 
point using Principal Component Analysis and determines the desire movements 
through statistical comparison. According to Cootes in [27], this approach leads to 
more reliably and accurate search results. Furthermore, Kroon in [13] believes that 
this method works better on RGB images.     
 
• Real time Active Shape Models 
 
Active Shape Models have proved to work well in image segmentation, feature point 
location and extracting objects contours. Nevertheless, applying this method for face 
detection and recognition, using a video sequence is a big challenge. In this case, 
the face model would have to fit the face in real time. Thus, when the face is moving, 
the model would adapt to the face in real time. It would also be interesting to see how 
the ASM could be applied on a picture or a video sequence capturing multiple faces.   
 
• Comparison with the Active Contour Models  
 
Active Shape Model is a method very similar to the Active Contour Models (Snakes). 
The Active Contour Model approach is based on an energy minimized spline function 
guided by external and image forces (constraints) pulling it towards image features. 
In both cases, the results are comparable even for noisy and cluttered objects. The 
difference occurs in the training phase where the Active Contour Models are much 
easier to train rather than the ASM, but the model in the Active Contour case is not 
that specific and usually implausible shapes may be generated for complex objects 
[25].   
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Last but not least, the ASM method is more robust to noise, clutter and occlusions, 
because the variability is better controlled and the results remain within the 
predefined domain limits.     
 

6.2 Conclusions 
Active Shape Models is one of the simplest methods used to detect objects, in this 
case, facial features. Nevertheless, it is an essential requirement to have good initial 
values for the pose parameters (model parameters are set to zero). If the method 
fails to converge it is most likely that the placement of the face model in the image is 
not good enough. Therefore, the Viola/ Jones face detector is used to initially detect 
the face and subsequently place the face model as good as possible on the face 
image. Experiments made on a set of different facial upright frontal images, provided 
by the MUCT dataset, showed that the face detector and also the initial placement of 
the face model worked quite well in most cases. Failures, in the sense of bad model 
placement, occurred when a person was wearing glasses. On the other hand, well 
placed models could still fail to converge, on images where the gray intensities 
around the faces was constant, for example the existence of beard where the edges 
are not visible. The quality of the initial position of the model and also its final 
convergence was measured by the me17 method.     
In its initial form, the Active Shape Model method would run directly on the original 
image provided that profile normal lengths are given. In this thesis work this was 
extended, applying a multi resolution approach using two pyramid image levels with 
an objective to achieve a more robust model fit and convergence within the coarse 
image.  
The reliability of the correction vectors, is strongly dependant from the position where 
the Mahalanobis distance is minimum within the displacement positions. The 
Mahalanobis distance is very sensitive when it comes to the computation of the 
inverse covariance matrix.  
As already explained, strong linearities between the interpolated points could result a 
covariance matrix which is not invertible (not positive definite and not full rank).  
That is why a modified covariance matrix was calculated (through spectral 
decomposition), which fulfils the inversion properties and helps to compute the 
correct point displacement.  
Computing the profile normal is also very critical. Representing a face contour via line 
segments connected by landmark points and calculating the profile normal at each 
point using the next – previous point relationship, may not accurately represent the 
definition of a normal at some point. Therefore, knowing the number of landmark 
points per face part, the profile normals would be calculated independently for each 
part.  
Moving on with the gray level appearance around each landmark point, the training 
images should have similar intensities values around each facial area. This is 
essential because the profile matching should be done between similar intensities.  
What still remains ambiguous is the ideal size of the Allowable Shape Domain. 
Results showed that the size of the domain is very sensitive and if too small or too 
large the method will fail. For a predefined domain size, all Cootes images used for 
searching (except for one) converge. Still it is hard to believe, that although the same 
data set was used, this particular image would fail. Have in mind that even increasing 
the number of iterations the result wouldn’t change. 
Last but not least, adding noise to the training images and increasing variability of the 
landmark points affected the final result. It became clear that significant changes 
occurred after adding Gaussian noise to the images. For each one of the search 
images the domain size had to change otherwise the method would fail.   
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On the other hand, changing the displacement of the landmark points by a small 
random value didn’t result in any major changes.   
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Appendix A: Software structure 

 
Users Input 
 
For the program to executed, the user must set the following parameters: 
 

Table A1 
Description Code variable name Initialization 
Directory of the training images string images_names FIXED 

Directory of the landmark points string file_folder FIXED 

Directory of the Pyramid Images string Pyramid_Folder FIXED 

Search Image IplImage* 
Search_image USER 

Number of label points int number_label_pts USER 

Threshold float threshold USER 

Length of landmark intensity profile 
(model) int nsamples_model USER 

Search length int nsamples_search USER 

Number of Pyramid scales int nScales USER 

 
The first three directories remain fixed and the user should not modify the name of 
the folder where the images and landmark coordinates are stored. The program 
reads two text files, one for the images and one for the landmark coordinates. The 
user can only modify what is inside these text files. This means that training images 
and corresponding landmark points which are not required in the training process can 
be discarded by erasing the index (name) of this set.   
Every row represents a subset of the total training set and is linked either to the text 
file containing the corresponding coordinates or the image of the specific subset. So 
for example in figure [A1.a], when the system reads the first line which is “data11.txt” 
it will then call the text file containing the coordinates of the 11th training image. For 
the images the procedure is similar. 
 

  

Figure A1.a: text file of landmark points Figure A1.b: text file of the training 
images 
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Declaration of structures and classes 
 
This chapter describes in detail all main structures/classes implemented for this 
thesis work. The first structure, called Whisker {} has the following form: 
 
struct Whisker 
{ 
           CvMat *Contour_Points;         
 CvMat *Contour_Normals;   
 CvMat *intervalx;  
 CvMat *intervaly;                
 CvScalar samples;                  
 CvMat *derivatives_norm;   
 CvMat *covariance_matrix; 
 CvMat *mean_samples;    
 vector <CvMat*> derivatives_norm_vec, inputMatrix; 
}; 
Listing A1: Whisker structure 

 
The above structure is used to describe and capture all information needed for 
defining a profile normal of a landmark point. Its members are described in the table 
below:  
 

Table A2 
Members name Definition 

CvMat *Contour_Points 
It’s a matrix containing the coordinates of 
the landmark points in the current training 
image 

CvMat *Contour_Normals It’s a matrix containing the normals to the 
landmark points in the image 

CvMat *intervalx The linear intervals on the line in the x 
direction 

CvMat *intervaly The linear intervals on the line in the y 
direction 

CvScalar samples 
Number of samples taken on the profile 
normal. This number concerns only the 
one side of the normal.  

CvMat *derivatives_norm It’s a matrix containing normalised 
derivatives of the gray level appearance  

CvMat *covariance_matrix Covariance matrix of a point 

CvMat *mean_samples This is the mean normalised derivative of 
a point  

vector <CvMat*> 
derivatives_norm_vec 

It’s a vector that groups each landmark 
point, its normalised gray scale 
appearance in all images  

vector <CvMat*> inputMatrix 
A vector containing the gray level 
appearance of the current point in all 
images 
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class GrayLevelAppearance 
{ 
public: 
             Whisker CurrentImage; 
             IplImage *image; 
 
             void GetContourNormalsFace (string path, CvMat *Contour_Points,  
                                                                 CvMat *ContourNormals); 
 
             void GetContourNormals (string type, CvMat *Contour_Points,  
                                                        CvMat *ContourNormals); 
 
             void linear_intervals (CvMat *Contour_Points, CvMat *ContourNormals,  
                                           CvMat *intervalx, CvMat *intervaly, CvScalar *samples); 
 
             void GetDerivatives (IplImage *src_image, CvMat *intervalx, CvMat               
*intervaly,  CvMat *derivatives_norm, double samples); 
}; 
Listing A2: Class GrayLevelAppearance 

 
 
The above is considered a more generalised class, containing the aforementioned 
structure of listing A1, the image from which the gray level appearance of each 
landmark point will be extracted, subject to the following four functions described 
below. 
 
 
class PyramidLevel 
{ 
public: 
            GrayLevelAppearance  Appearance; 
 vector<CvMat*> S;    // Mean Covariance matrix 
 vector<CvMat*> gs;    // Mean normalised intensity 
}; 
Listing A3: Class PyramidLevel 

 
 
The class PyramidLevel {} is an even more generalised class from the above two.  
It contains three public members, the first one being the class described previously 
and the other two are vectors containing the covariance matrix and the mean gray 
normalised appearance of each landmark point.  
In a tree representation, PyramidLevel {} would be the parent, 
GrayLevelAppearance {} the inner node and the structure Whisker {} the leaf node.  
The relationship connecting the PyramidLevel {} class with the 
GrayLevelAppearance {} is a composition because even if the PyramidLevel {} is 
destroyed, the GrayLevelAppearance {} can be still be defined in the initial training 
image (only the pyramid of the image is destroyed). On the other hand, if the 
GrayLevelAppearance {} is destroyed, a whisker cannot exist. In this case, the 
relationship will be aggregation. The UML diagram below illustrates this relationship:  
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Figure A2: UML representation of the connectivity between the classes and structures 

 
 
struct PCAParam  
{ 
 CvMat *P; 
 CvMat *b; 
 CvMat *mean_ASD; 
 CvMat *S; 
 float Threshold; 
 CvMat *eig_Vec; 
 CvMat *eig_Val; 
 vector<double> modes;  
 vector<CvMat*> new_shapes; 
}; 
Listing A4: Structure PCAParam 

 
The above structure PCAParam {} is the main structure used to capture the statistics 
of the aligned shapes. The table below gives the definition for the members of this 
structure: 
 
 
 

GrayLevelAppearance

+CurrentImage: Whisker
+image: IplImage

+GetContourNormalsFace(path: string, Contour_Points: CvMat*): CvMat*
+GetcontourNormals(type: string, Contour_Points: CvMat*): CvMat*
+linear_intervals(Contour_Points: CvMat*, ContourNormals: CvMat *, samples: CvScalar*): CvMat*
+GetDerivatives(src_image: IplImage*, intervalx: CvMat*, intervaly: CvMat*, samples: double): CvMat*

PyramidLevel

+S: Vector
+gs: vector
+Appearance: GrayLevelAppearance

Whisker

+Contour_Points: CvMat*
+Contour_Normals: CvMat*
+intervalx: CvMat*
+intervaly: CvMat*
+samples: CvScalar
+derivatives_norm: CvMat*
+covariance_matrix: CvMat*
+mean_samples: CvMat*
+derivatives_norm_vec: vector<CvMat*>
+inputMatrix: vector<CvMat*>
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Table A3 
Member Name Description 

CvMat *P A matrix containing the most significant 
eigenvectors 

CvMat *b The model parameter vector whose size depends 
on the number of the most significant eigenvalues 

CvMat *mean_ASD The mean aligned shape 

CvMat *S The covariance matrix of the aligned shapes 

float Threshold Part of variance to be explained by the shape 
model  - Defines the number of modes   

CvMat *eig_Vec Total number of eigenvectors deduced from the 
aligned shapes 

CvMat *eig_Val Total number of eigenvalues deduced from the 
aligned shapes 

vector<double> modes  A vector containing the most significant 
eigenvalues 

vector<CvMat*> new_shapes 
A vector containing the coordinates of new shapes 
produced from the most significant eigenvalues 
and eigenvectors 

 
Last but not least, to compute the me17 quality fit, a text file named 
me17_fixedPoints.txt is used. This file contains the fixed landmark coordinates of 
the face where the face model is applied on. Thus, when the search process is 
completed, this text file is inserted into the program for comparison.  It’s also used 
when the face model is placed on the image, in order to check the quality of the initial 
position.  



 

73 
 

Appendix B: Aligning a pair of shapes 

Given two similar shapes, 𝑥1 and 𝑥2, a rotation 𝜃, scale s and translation �𝑡𝑥, 𝑡𝑦� 
could be found to map 𝑥2 into 𝑀(𝑥2) + 𝑡 as to minimize the weighted sum: 
 

𝐸 = (𝑥1 −  𝑀(𝑠,𝜃)[𝑥2] − 𝑡)𝑇𝑊(𝑥1 − 𝑀(𝑠, 𝜃)[𝑥2] − 𝑡) (B.1) 
 
where, 
 

𝑀(𝑠, 𝜃) �
𝑥𝑗𝑘
𝑦𝑗𝑘� =  �𝑠 𝑐𝑜𝑠𝜃 −𝑠 𝑠𝑖𝑛𝜃

𝑠 𝑠𝑖𝑛𝜃 𝑠 𝑐𝑜𝑠𝜃 � �
𝑥𝑗𝑘
𝑦𝑗𝑘� (B.2) 

𝑡 =  �𝑡𝑥 , 𝑡𝑦, … , 𝑡𝑥, 𝑡𝑦�
𝑇 (B.3) 

 
and W is a diagonal matrix of weights for each point. 
 
If,  
 

𝑎𝑥 = 𝑠 cos𝜃 𝑎𝑦 = 𝑠 sin𝜃 (B.4) 
 
a least square approach (differentiate with respect to each of the variables 𝑎𝑥, 𝑎𝑦, 𝑡𝑥, 
𝑡𝑦)  could be achieved: 
 

�

𝑋2 −𝑌2 𝑊 0
𝑌2 𝑋2 0 𝑊
𝑍 0 𝑋2 𝑌2
0 𝑍 −𝑌2 𝑋2

��

𝑎𝑥
𝑎𝑦
𝑡𝑥
𝑡𝑦

� = �

𝑋1
𝑌1
𝐶1
𝐶2

� (B.5) 

 
where, 
 

𝑋𝑖 = �𝑤𝑘𝑥𝑖𝑘

𝑛−1

𝑘=0

 (B.6) 𝑌𝑖 = �𝑤𝑘𝑦𝑖𝑘

𝑛−1

𝑘=0

 (B.7) 

𝑍 = �𝑤𝑘�𝑥2𝑘2 + 𝑦2𝑘2 �
𝑛−1

𝑘=0

 (B.8) 𝑊 = �𝑤𝑘

𝑛−1

𝑘=0

 (B.9) 

𝐶1 = �𝑤𝑘(𝑥1𝑘𝑥2𝑘 + 𝑦1𝑘𝑦2𝑘)
𝑛−1

𝑘=0

 (B.10) 𝐶2 = �𝑤𝑘(𝑦1𝑘𝑥2𝑘 − 𝑥1𝑘𝑦2𝑘)
𝑛−1

𝑘=0

 (B.11) 
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Appendix C: Calculating the eigenvectors of the covariance matrix when 
there are fewer samples than coordinates 

When there are fewer training examples N, than coordinates 2n, the eigenvectors of 
the 2𝑛 × 2𝑛 covariance matrix S can be calculated from the eigenvectors of a smaller 
𝑁 × 𝑁 matrix derived from the same data. Due to the fact that the eigenvector 
calculation time is equal to the cube size of the matrix, this method could save up a 
lot of time.  
 
Given N examples 𝑥𝑖 (𝑖 = 1, … ,𝑁), let D be a 2𝑛 × 𝑁 matrix: 
 

𝐷 = (𝑥1,𝑥2, … , 𝑥𝑁) (C.1) 
 
As mentioned in chapter 3, the covariance matrix could be written in the form: 
 

𝑆 =
1
𝑁
𝐷𝐷𝑇 (C.2) 

 
Let T be a 𝑁 × 𝑁 matrix: 
 

𝑇 =
1
𝑁
𝐷𝑇𝐷 (C.3) 

 
and let 𝑒𝑖 (𝑖 = 1, … ,𝑁) be the unit, orthogonal eigenvectors of T corresponding to 
eigenvalues 𝛾𝑖: 
 

𝑇𝑒𝑖 = 𝛾𝑖𝑒𝑖      (𝑖 = 1, … ,𝑁) (C.4) 
 
Then from [C.3], [C.4] is equal too: 
 

1
𝑁
𝐷𝑇𝐷𝑒𝑖 = 𝛾𝑖𝑒𝑖 (C.5) 

 
Premultiplying by D, 
 

1
𝑁
𝐷𝐷𝑇𝐷𝑒𝑖 = 𝛾𝑖𝐷𝑒𝑖 (C.6) 

 
𝑆(𝐷𝑒𝑖) = 𝛾𝑖(𝐷𝑒𝑖) (C.7) 

 
Then if 𝑒𝑖 is an eigenvector of T, then 𝐷𝑒𝑖 is an eigenvector of S and has the same 
eigenvalue. The N orthogonal eigenvectors of S are then 𝑝𝑖 (𝑖 = 1, … ,𝑁), where: 
 

𝑝𝑖 =
1

�𝛾𝑖𝑁
𝐷𝑒𝑖 (C.8) 

 
with 𝜆𝑖 = 𝛾𝑖.  
The scaling factor in [C.8] is required to give the eigenvectors unit length.  
Orthogonality can be easily shown: 
 

𝑝𝑖
𝑇𝑝𝑗 =

1
𝛾𝑖𝑁

𝑒𝑖𝑇𝐷𝑇𝐷𝑒𝑗 =
1
𝛾𝑖
𝑒𝑖𝑇𝑇𝑒𝑗 = 𝑒𝑖𝑇𝑒𝑗 = �1     (𝑖 = 𝑗)

0     (𝑖 ≠ 𝑗)
� (C.9) 

 


