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Abstract. Human extraction and tracking is an undergoing field were many
researchers have been working on for more than 20 years. Although several
approaches in the 2D domain have been introduced, 3D literature is limited,
requiring further investigation. Within this framew ork, an accurate and fast-to-
implement pipeline is introduced working in two main directions: pure 3D
foreground extraction of moving people in the scene and interpretation of the
human movement using an ellipsoid as a mathematical reference model. The
proposed work is part of an industrial transportation research project whose
aim is to monitor the behaviour of people and make a distinction betw een
normal and abnormal behaviours in public train wagons using a netw ork of low
cost commodity sensors such as Microsor Kinect sensor.

1 Introduction

Human detection and tracking has been a challenging task for many scientists in
the computer vision and machine learning communities. Many researchers have
been thoroughly working in the direction of improving and refining existing
algorithms for achieving minimum detection failures. To the best of our knowledge,
the majority of these methods use training data for learning a classifier capable of
detecting and also labelling a human posture or action. Extending the problem in
3D, the works of [9], [3], [11] and [5] involved detecting people and their body parts
taking advantage of the richness of the RGBD data. Nevertheless, these
approaches seem to deliver poor detection rates in environments with lots of noise
in the cloud, fastillumination changes and overcrowding.

Interesting work was also introduced in the 3D people tracking literature: the
Unscented Kalman Filter [13] and the Random Hypersurface Models [1] are some
of the most recent development techniques applied in the area of human tracking in
a cloud. In a multi Kinect sensor configuration, the work of [4] proposed a method
for detecting and tracking a person in the scene by fitting a cylinder shape to its
body.

For the specific application we are interested in, these approaches would fail for the
following reasons:

e The Kinect network configuration in the wagon covers only a limited field of
view (FOV), introducing large amount of noise in the depth images due to the
conflict between the infrared emitters. Thus, the generated point clouds contain
a lot of noise which in tum force the algorithms to fail even after extensive



tuning of the parameters.

e A train wagon consists of many non reflecting areas such as windows, dark
color seating, etc. that significantly reduce the amount of data in the point
cloud. Areas in which the infrared light of the sensor is absorbed by the
element of the object, returns no data to the depth image.

e Instantillumination changes (e.g. entering a station platform from a dark tunnel)
are some natural environmental conditions that strongly effect the quality of any
detection algorithm.

e Rush hours in early morning and late afternoon introduces a lot of occlusions
and overlapping between people in the wagon, making it impossible to detect
any human instance.

In this proposed work, we try to address these issues by currently improving the
work of [6] which is based on pure 3D background estimation between an empty
background and a current processed cloud. From the extracted foreground, an
ellipsoid is utilized for encapsulating each individual body. One main advantage of
this mathematical shape (compare e.g. to asphere) is the fact that an ellipsoid can
better represent a human figure and can be used to derive larger amount of
information from it (higher degrees of freedom).

2 Approach

We introduce an approach for extracting, monitoring and tracking human figures in
3D space coming from RGBD Kinect sensors. Main objective is to exploit a
mathematical representation such of an ellipsoid for obtaining meaningful
information from the human posture. At first, raw point clouds are acquired from all
RGBD sensors through a synchronized camera acquisiton system. For
computational efficiency, every incoming point cloud is trimmed in the depth
direction based on a predefined threshold. Subsequently, a background subtraction
is performed using the octree approach of [6]. If moving objects are present,
foreground points are projected on a 2D binary image and connected components
is used for preserving contours with an area larger than a predefined threshold. The
rest of the blobs are considered to be noise and therefore are removed.

The remaining parts of our algorithm entails the fitting of an ellipsoid over every
human figure in the scene and approximately monitor his behaviour through the
underying geometry of the shape. The algorithmic part of the ellipsoid, for
consistency and clarity is examined in a separate chapter whereas the rest of the
steps are extensively analysed in the currentsection.

2.1 Point Cloud Trimming

It is unlikely that all points of a point cloud are required for extracting foreground
moving objects. In most cases, points placed outside the region of interest can be
removed so that the remaining part of the work flow could be accelerated. The
trimming is been done in the depth direction, where is more likely to have points
that are closer to a wall or any kind of object that does not contribute to the rest of
the scene.



Figure 1. Pipeline of our approach

2.2 Background Subtraction

We use the method of [6] for extracting moving objects in the scene. It works by
recursively encoding the structural differences between the octree representations
of two point clouds. These structural differences represent the spatial changes
between the two douds which in our case is the moving foreground. An octree is a
tree based data structure in which every internal/leaf node has exactly eight
children. Each node in the octree subdivides the space it represents into eight
octans. In the case of object extraction it can be used for detecting spatial changes
between the octree of the background and current cloud. Spatial changes in the leaf
node of the tree (sparsity of points, amount of neighbours, etc.) can give an
indication of these spatial changes. Depending on the predefined size of the leaf
node, detection sensitivity rate and processing time can vary. Large leaf nodes are
faster to process but don't provide detailed information on the foreground and
therefore only very significant spatial changes are detected. On the contrary, very
small leaf sizes can capture detailed spatial changes but the computation time is
extremely costly. In all cases, based on the FOV and amount of detection required,
leaf size can be adjusted manually by the user. For more information refer to the
author's paper ([6])-

2.3 Projection on a 2D plane

Extracted moving objects from the scene in a traditional background estimation
fashion are always followed by some surrounding noise. Instant illumination
changes and shadows are some the most common problems which still remain
unsolved even in the 2D domain. In 3D space, depending on the cloud generation
source (stereo cameras, TOF, structured light sensors), noise modelling differs. We
approach the problem by projecting all 3D foreground points on a 2D binary image
and extracting all contours using connected component analysis. Contours which
have a size larger than a predefined threshold are retained and the rest are
removed. Performing an accurate calibration of the sensor will definitely affect the
quality of the projection. Therefore, a pre calibration step is strongly suggested in
this case.

2.4 Convex hull of a human figure

In the field of computational geometry, convex hull of a shape is the smallest
convex polygon containing all points of that object. Considering this statement, the



ellipsoid computation would only require the convex hull of the body rather than the
complete set of points representing the body. If all points had to be used,
computational speed would significantly drop, keeping the performance of the
algorithm in very low levels. Mathematical notation of the convex hull and its use
within this framework is given in the next chapter.

3 The ellipsoid asa human motion interpreter

As was stated in a previous section, an ellipsoid can better approximate the human
shape compare than a sphere due to its shape and high degrees of freedom.
Inspired by the work introduced in [8] and [12], we were able to fit a minimum
enclosing ellipsoid to the extracted human figure and monitor his behaviour through
the geometrical variations of the ellipsoid. The attributes that were tracked are the
following:

Center of gravity of the ellipsoid

Vertex position

Semi-major axes length

Variation of each semimajor axis

expressed in percentage

¢ Rotations omega, phi and kappa
extractred by the covariance matrix
of the ellipsoid

¢ Volume ofthe ellipsoid

e Constrained angles omega, phi

and kappa as dipicted by figure 2.

Figure 2. The constrained ellipsoid

We deploy a three dimensional Cartesian right-handed coordinate system in which
any set of two lines are perpendicular to each other and have a length equal to one
(refer to Fig. 2). The main idea is to have a coordinate system placed at the center
of gravity of the current ellipsoid remaining invariant to ellipsoid variations. In this
way, any rotation that the ellipsoid undergoes due to the human pose change, this
coordinate system will continue to preserve a fixed orientation and therefore every
semi-major axis of the ellipsoid will be checked against a predefined axis of this
system.

The complete pipeline for retrieving the angles of each semi-major axis with respect
to this "imaginary" fixed coordinate system is defined as follows: As an input to the
algorithm, the position of the vertices is given. Next step involves finding the angle
of every semi-major axis, translated and nomalized at the origin with respect to a
predefined axis of the fictitious system. As a final step, finding the octant area in
which every normalized vertex falls into, some logical statements - constrains for
the derived angles are made.

Assigning a reference coordinate axis of the fixed system to each semi-major axis
of the ellipsoid was chosen based on what is considered as human approximated
zero angle movement. Approximated zero movement is represented by a human
posture when he's standing with his hands down. Therefore, for fixed axis X the



semi-major axis b is assigned, also characterizing the width of the person. Then,
the Y axis is related to the a axis which corresponds to the depth of the person and
finally the Z axis is referred to the ¢ axis which expresses the height of the body.
After that, a check is been done in to all three angles in order to ensure that they
will always lie between the range of—180 @ ¢,,¢,, @, @ 180. Regarding the
octans orientation, every octant has its own placement in the coordinate frame
depending from the sign of the reference axes. Therefore, first octant(l) is placed
where %, y and z values are positive and /ast octant(Vill) where all points are
negative. The rest of the octants are numbered based on a counter clockwise
rotation around the positive z axis as seen in Figure 2.

4 Experimental Results

4.1 Camera configuration and hardware

A train wagon was provided as a prerequisite to the project by a transportation firm
for acquiring, testing and evaluating different algorithms. The area of interest was
surrounded by a network of four Kinect sensors, mounted on an aluminium
construction as depicted in figure 3(a). Due to a non-disdosure agreement (NDA),
we are currently not able to publish results from the wagon, therefore a simulated
environment (replica) was build within a room using the same construction frame
and similar texture/environment characteristics as the one of the wagon 3(b)
covering a FOV of approximately 10 square meters. Scenarios, similar to the ones
acquired in the wagon where also generated in the room, containing one to more
people in nomal or abnomal state. Acquisition was done in parallel by all sensors
with an acquisition rate of approximately 19 fps. Every sensor is connected to a
dedicated USB bus due to the high rate of information generated from both infrared
and RGB camera.

Figure 3. 3(a) Camera mounting configuration within
the train wagon and 3(b) in the simulated
environment.

One of the main drawbacks of using multiple structured light sensors is the drastic
reduction of the depth image quality due to the intersection of near-infrared light in
space. Therefore, all sensors were oriented towards the lower center of the scene
restricting the overlapping onlyin the lower part of the FOV.



Conceming hardware performance, computers are configured with an Intel Core i7-
3770 processor, 16GB RAM and a Samsung 840 Pro SSD. In present state, the
complete framework is only able to run offline while real time processing would
require better hardware performance but also further software optimization. Data
from all sensors are processed with a frame rate of approximate 2 fps.

4.2 Calibration and bundle block adjustment

There are several libraries (eg. OpenNI, Freenect) which provide out-of-the-box
calibration parameters of the Kinect sensor. Nevertheless, for achieving maximum
possible accuracy of the generated point douds, a more precise calibration is
required. Main advantage of the Kinect sensor is that it uses low distortion lenses
with faintly apparent displacement errors around the corners/edges of the images.
The calibration was performed by using a regular chessboard with pattern size 2cm
and inner dimensions of 5x7 rows and columns respectively. Since infrared and
RGB sensors cannot work simultaneously, they were triggered to switch on and off
continuously (a switch lasts 0.5 seconds), in order to acquire roughly the same
chessbhoard data from the different perspectives. Detection and acquisition of
chessboard points was done in a live mode using OpenCV's chessboard comer
detector, which also delivers subpixel accuracy. The lenses were modelled using
Brown's 10 parametric model [2]. To avoid any disturbances of the speckies coming
from the infrared emitter in the infrared camera, the emitter was covered with tape
and a external hydrogen lamp was used for detecting the chessboard corners. A
total amount of 100 images was acquired and split (using a random selection
algorithm) in 10 different sets of 24 images each, each of which the calibration was
performed independently.

Figure 4. Regular chessboard used as a
reference system for all sensors mounted in
the train wagon.



Figure 5. From top row to bottom: raw scenes from different scenarios; foreground
masks extracted by our approach; results from [6] approach; cloud to cloud
background subtraction using a global threshold; The foregrounds extracted by our
approach together with their encapsulated ellipsoids; ground truth masks generated
by the implementation of [10] in the OpenNI framework.

Due to the multi-camera configuration in the wagon, every sensor produces
different results which in turn can contribute for improving the quality of the
extracted foreground (e.g. registration of all foregrounds, solving occlusion
problems, etc.). Although current working status involves processing all sensors in
parallel applying the introduced algorithmic pipeline to every sensor, results are
automatically transformed into a common coordinate system for better comparing
the data between them but also, in long term, fuse all information in a multi-sensor
approach. The Efficient Perspective n Point algorithm [7] was used for transforming
all sensors into a global coordinate system defined by a large chessboard with
pattern size of 15cm (see Fig. 4). The accuracy of the camera external parameters
(reprojection error) was in the range of less than a quarter of a pixel. Finally, we
improved the accuracy of the camera’s poses by setting the results from the
previous step as approximate initial values to a photogrammetric bundle
adjustment. Internal parameters of the sensors remained fix (due to accurate lens
correction parameters) and only the external orientation parameters were refined
delivering a variance of the unit weight, o, = 0.16 pixels. Ground control points were
generated setting the Z value to zero (coplanar reference object) and X-Y values
according to the number of rows, columns and pattern size respectively. The main
reason for using this form of rerefence system is the fact that it can be easily used
as a reference object for all cameras. On the other hand, coplanar objects lack of
spatial distribution information and introduce several geometrical constrains.



4.3 Object extraction and tracking

Different scenarios, similar to the ones in the train wagon, were captured in a
simulated train field for testing and evaluating the quality performance of the
algorithm intorduced in section 2. Our approach was checked against [6] and a
common cloud to doud background subtraction using a global distance threshold,
setting the borderline between foreground and background. To the best of our
knowledge, there are no other background subtraction approaches that could be
compared against ours as most of them are heavily dependent on machine learning
algorithms. Ground truth was generated by detecting the human figure from the
depth images using the skeleton tracking algorithm implemented in the OpenNI
framework [10]. The extracted figure was then projected into 3D space using the
internal calibration information of the corresponding sensor. Results from different
camera views and scenarios are given in Figure 5.

It is clear that our method outperforms the two other approaches, producing better
quality foreground masks in all cases. All parameters were empirically defined after
extensive evaluation and testing: for the octree, it was important to provide a leaf
size that controls the amount of voxels in the cloud and was setto 0.10m. Then, the
depth trimming of the point cloud was perfomed using a pass through filter
preserving all points up to 4m. Also, contours on the binary image that had less
than a 1000 or more then 7000 pixels respectively were removed. Finally, the global
distance threshold for the cloud to cloud subtraction was setto 5cm.

Figure 6. 3D trajectory of the center of Figure 7. Likelihood of the distance
gravity of a person as computed by the error for every pointin the trajectory with
ellipsoid, projected in X,Y and Z planes. respectto its ground truth.

Last step involves fitting an ellipsoid around the human figure and extracting its
geometrical characteristics over time. Kalman filter was applied to all atiributes of
the ellipsoid for removing any unwanted sparks and smoothing out the data. Figure
6 shows 110 frames from a trajectory of a person as computed by the
aforementioned approaches together with the ground truth generated from [10]. It is
clear that our method produces greater stability compare to the other two methods
as theytend to follow a constant plateau effect. This is because the amount of noise
in the scene does not allow the ellipsoid to be encapsulated only around the body



but also incorporating the noise around it. On the contrary, our approach follows the
ground truth trajectory in a more likewise manner. The trajectory of every approach
was checked against the ground truth using the following formulation:

e gl

(1)
111,

where L' is the likelihood (in %) of every point on a trajectory at time t against s
equivalent ground truth point, ||.||> represents the second Euclidean nom and Py,
P,' are points on the trajectory of any of the two approaches and ground truth
respectively. Figure 7 cleady shows the quality of likeliness between different
approaches with respect to the ground truth. Our pipeline provides less than 20%
likelihood fitting to the ground truth, where the rest tend to be far away from it, as a
result of severe noise in the environment. This is observed in the areas higher than
approximately 30-40% which means that the distance of a point in the trajectory is
approximately a quarter away compare to the distance of the ground point from its
natural zero origin.

One of the main drawbacks of our approach is the instant increase of the size of the
ellipsoid when two or more people come very close to each other. Although this is
controlled given a minimum and maximum size of a contour, it still remains an
unsolved issue and it's currently investigated. All parameters of the ellipsoid are
saved in an XML file and imported in a tracking visualizer for monitoring the
behaviour of people in the train. Unfortunately, this visualizer was developed by
another partner within the project and therefore due to NDA we are not yet allowed
to make any results publicly available. Finally, psychologists in the social and
cultural anthropology field where responsible for interpreting and classifying the
behaviours as nomal or abnomal.

5 Discussions and conclusions

This paper introduced a method of extracting, monitoring and tracking people in an
indoor train environment using a network of sensors, were current state of the art
machine leaming detection approaches would fail due to the challenging
environmental perturbations. Current state of the work involves processing all
cameras in parallel using the algorithm presented in section 2. Results show that
the proposed method can deliver high quality foreground segmentation masks
compare to the ones of [6] and cloud to cloud subtraction. We were able to
eliminate the noise and preserve only the moving person in the scene by modifying
the approach of [6]. Results in the previous section also showed that the accuracy
of the foreground strongly reflects on the accuracy of the ellipsoid. Noise in the
surrounding can provide misleading information which does not help the monitoring
process and eventually will result false interpretation of the behaviour. We where
able to achieve a likelihood rate of less than 20% from the ground truth in
comparison to the other approaches, most of the time retaining a deviation larger
than 30-40% from ground truth. We also tried to filter out these noisy blobs from the
processed clouds using different 3D filters but in all cases the resulting foreground



was very much affected by the noise in the scene.

In the preprocessing steps, calibration was mandatory for maximizing reliability of
the produced results. The internal parameters were mainly used for generating the
point clouds butalso for projecting the 3D points on a binary image as discussed in
section 2.3. Bundle adjustment was performed keeping the internal parameters
fixed in the convergence process optimizing only the external values of the
cameras.
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