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A B S T R A C T

We present a scalable pipeline for Free-Viewpoint Video (FVV) content creation, considering also visualisation in
Augmented Reality (AR) and Virtual Reality (VR). We support a range of scenarios where there may be a limited
number of handheld consumer cameras, but also demonstrate how our method can be applied in professional
multi-camera setups. Our novel pipeline extends many state-of-the-art techniques (such as structure-from-mo-
tion, shape-from-silhouette and multi-view stereo) and incorporates bio-mechanical constraints through 3D
skeletal information as well as efficient camera pose estimation algorithms. We introduce multi-source shape-
from-silhouette (MS-SfS) combined with fusion of different geometry data as crucial components for accurate
reconstruction in sparse camera settings. Our approach is highly flexible and our results indicate suitability
either for affordable content creation for VR/AR or for interactive FVV visualisation where a user can choose an
arbitrary viewpoint or sweep between known views using view synthesis.

1. Introduction

In the classical experience of movies or TV, a director carefully
chooses a particular viewing angle and sequence of scenes in order to
convey a story. Emerging types of media support the ability to in-
dividually control the viewer’s perspective, which can provide a more
immersive and more personalised viewing experience. When watching
a video of a football game or concert or other events, live or recorded,
empowering the viewer to become the director can bring them closer to
the action and give them a sense of immersion. To achieve this, 3D
geometry information of the scene to be displayed is necessary. In a lab
or a professional studio environment, this can be obtained by massively
instrumenting a room with large amounts of specialised camera
equipment. Even though this can produce high quality 3D reconstruc-
tion results, the downsides are that it is difficult or unfeasible to obtain
similar quality for larger scale and outdoor scenes and thus it is limited
only to professional production setups.

Furthermore, applications on virtual and augmented reality (VR/
AR) have received tremendous attention over the last years, while
technological advancement is increasing with time and making sta-
tionary systems and mobile devices much more powerful for such

applications. With prototypes and consumer devices becoming widely
available, there is an ever increasing demand for compelling content.
Affordable 3D content creation tools, in contrast to high end solutions
we mostly see today, will be necessary to satisfy the needs of these
emerging consumer mass markets.

Nowadays, most available VR/AR content is synthetic (graphics),
created by artists and designers. Available real-world content (live ac-
tion) is mostly 360-degree video, captured using omnidirectional
camera rigs. However, the latter can only provide a 3 degrees of
freedom (3DoF) immersive experience, as only rotation is supported for
the viewer. The development of new Free-Viewpoint Video (FVV)
techniques, such as the one presented in this paper, can overcome these
limitations by allowing the user to freely navigate within a recorded
scene and select any viewing point he wished to observe at any moment
(6 degrees of freedom, 6DoF) in time.

FVV is a well known field and has received much attention com-
mercially but also scientifically. We have seen commercial applications
in movie productions to show ‘bullet-time’ visual effects, or in sports
broadcast, where companies such as Vizrt2 or Intel play with a virtual
camera to enhance the viewer experience. Nevertheless, content cre-
ated with these approaches does not support the interactivity required
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in VR/AR. Probably, Microsoft (through the work presented in [1]) and
8i3 have the best FVV content creation systems that could work for
these immersive applications. However, both companies use high-end
capturing setups populated with dozens of cameras (both RGB and in-
frared), green screen studios and high performance computing capa-
cities.

Inspired by the work of Ballan et al. [2], the purpose of our work is
to bring the creation of interactive FVV content, which can be experi-
enced in VR/AR, closer to the average user and to make it more af-
fordable for (semi-) professional content creators. To this end, the
principal contributions of our work can be summarised as follows:

• An end-to-end system to create and process FVV sequences that can
be and visualised either in VR/AR or using a view-synthesis mode.

• A lightweight system that produces high quality content from a
limited number of commodity cameras by combining state-of-the-art
reconstruction techniques with efficient camera pose estimation, 3D
skeletal restraint, colour consistency and multi-view stereo restraint
techniques.

• Multi-source shape-from-silhouette (MS-SfS) and efficient fusion of
different geometry data.

It should be noted that in this work we do not focus on the areas of
efficient data compression for transmission and storage.

2. Related work

Following the structure presented in the work by Smolic [3], pre-
viously introduced in the context of graphics by Kang et al. [4], current
FVV techniques are normally classified as a continuum in between two
groups: image-based, where the intermediate views between cameras
are generated using interpolation or warping of the available images;
and geometry-based techniques, where 3D geometry of both the dynamic
foreground and static background is acquired, allowing the rendering
from any other viewpoint. Although extensive literature exists in the
field, in this sections we will focus on the most important contributions
related to our work.

A very significant early image-based FVV technique is the one
proposed by Zitnick et al. [5]. Their system generates multiple depth
maps using a multi-camera setup, allowing the user to experience new
rendered views in between cameras and in a limited area around them.
Another approach is the one proposed by Lipski et al. [6], where an
array of standard consumer cameras is used to generate a FVV scene.
The 2D matrix of cameras is extended to a 3D by adding a temporal
component, creating a 3D grid that is triangulated using Delaunay tri-
angulation, which defines different paths of virtual camera across the
sequence. The rendered view is a weighted warp of all these possibi-
lities. The result presents high visual quality but if the number of
cameras is limited, the possible navigation range is also very limited.

One of the most intensively studied application areas of image-
based FVV is sports broadcasting. There are many related publications,
from properly registering the cameras [7], generation of intermediate
viewpoints [8], or the correct representation of the players in the
camera transitions [9], normally using simple billboards or a more
advanced billboard warping technique [10]. Similarly, the work by
Ballan et al. [2], another important example of image-based FVV and
the one that inspired our project, uses billboard interpolation. Specifi-
cally, a scene is captured using handheld commodity cameras, both
foreground masks and camera pose are recovered at every frame, and a
simple model of the background is reconstructed to improve the visual
experience in camera transitions.

On the other end, geometry-based techniques normally focus on
acquiring the 3D geometry of a scene as accurately as possible, which

can be seen as a 3D reconstruction problem that is extended to the
temporal dimension. Space carving or SfS is a well known technique,
widely cited in the literature [11]. Naturally 3D reconstruction of hu-
mans has been of most interest. Starck et al. [12] for instance utilise SfS
with photo consistency. Multi-view stereo (MVS) techniques have also
been widely used for reconstruction of 3D models [13] and especially
for dynamic 3D scenes [14]. One of the most interesting works using
MVS for FVV is the one by Collet et al. [1]. In a studio setup they use
both RGB cameras and infrared structured light to generate dense point
clouds using MVS. These point clouds are meshed using a silhouette
constrained Poisson surface reconstruction [15]. Their results are im-
pressive, but the approach requires an expensive and sophisticated
hardware setup in a studio environment, which is prohibitive for many
application scenarios. Recently, Mustafa et al. [16] focus on creating a
joint multi-view segmentation and reconstruction system that uses
temporal coherence between frames. As it is discussed in Section 5
neither SfS or MVS are perfectly suitable for very sparse camera setups,
so we take advantage of the best of each of them in our novel MS-SfS
and data fusion approach.

In between these two extremes, we can find very interesting tech-
niques that make use of 3D geometry estimation to improve the
synthesis of new views. For instance, the work by Lipski et al. [17] uses
MVS to generate a point cloud of the scene, helping their image
warping system to perform better. This is also the principle of the im-
mersive instant replay by FreeD, but they use a very dense setup of high
quality cameras. Our approach can be included in this last group of
techniques, as we use 3D reconstruction of the scene to improve the
view synthesis. However, we aim for accurate 3D reconstruction of
dynamic scenery, which allows users to fully immerse in related VR/
AR/MR visualisations, while supporting affordable capture and pro-
cessing.

3. System overview

Fig. 1 presents an overview of our system, which is divided into
three main blocks: scene acquisition and preprocessing, scene re-
construction, and visualisation. The first stage of our system, described
in Section 4, is preparing the data for the later stage of the re-
construction. As we are not restricted to professional setups with con-
trolled background and illumination or still cameras, it is necessary to
first correct the colour differences between the images. Then, we apply
object segmentation to separate the dynamic foreground from the static
background and finally, estimate the camera poses for every frame of
each sequence.

The second and core part of the process is the scene reconstruction,
described in Section 5. To overcome the complexity of producing dy-
namic 3D models in very sparse camera setups, we introduce a new
method that fuses different sources of data. On the one hand, we esti-
mate a dense point cloud using an enhanced MVS approach. On the
other hand, we estimate the volume of the dynamic subject through a
novel, multi-source shape-from-silhouette (MS-SfS) approach, which
uses silhouettes, colour consistency and the 3D skeleton (pose) in-
formation of the subject. The resulting models are fused generating a
3D mesh that contains details of the point cloud and the completeness
of the volume.

Finally, Section 6 presents a qualitative evaluation of our approach
and different rendering results both in a VR/AR environment but also in
FVV view-synthesis applications.

4. Scene acquisition and preprocessing

Our system considers a static 3D background and human performers
in the scene, normally captured with a sparse setup of static or moving
consumer handheld cameras, each of them with its own clock (time-
stamp) and frame rate. For preserving consistency between the se-
quences in the dynamic reconstruction stage, it is essential to convert3 http://8i.com/.
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such input to the same frame rate and to perform temporal synchro-
nisation. Different temporal synchronisation techniques are widely
available and any can be used with our system. For example, in one of
our outdoor sequences we used a simple Ultra bright LED flash to
synchronise the cameras. Moreover, due to the desired flexibility in our
scenario, cameras may have varying resolution and exposure. We
therefore include a colour correction stage to minimise such incon-
sistencies. The cameras’ 3D poses are computed relatively to the 3D
coordinate system of the background scene. As a final preprocessing
step, the object in question to be reconstructed is segmented in all se-
quences using the latest state-of-the-art algorithms.

4.1. Colour correction

Due to the casual nature of our setup, it is necessary to face the
possible use of different camera sensors, with different resolutions and
even white balance. This results in images with very different colour
tone, that might introduce errors in the colour consistency check or
artifacts in the texture mapping stage. To solve this, we apply the colour
transfer system by Grogan et al. [18,19], which transforms the colour
distribution of a target image to match that of a palette image. This
colour transfer method uses Gaussian Mixture Models to represent the
colour distribution of the target and palette image, and these are ro-
bustly registered to estimate a non-linear parametric colour transfer
function. To correct the colour differences between the cameras using
this technique, an image frame is selected from both the target and
palette image sequences, and a colour transfer function is estimated. As
this transfer function is parametric, it is especially good for video se-
quences: it can then be applied to all frames in the target image se-
quence without creating any temporal artifacts, and can take advantage
of parallel processing architectures to ensure that the recolouring is
completed quickly.

4.2. Camera pose estimation

As we consider scenarios with low-cost handheld cameras, it may
become necessary to update the camera pose parameters for every
frame of a given multiview sequence. However, applying high quality
SfM frame-by-frame could be intractable and computationally very
expensive. Similarly, monocular SLAM algorithms may fail due to their
dependency on good initialisation and their instability during very
small motions, which is the typical case with handheld devices. We
therefore devise an approach where we estimate accurate calibration
using SfM only at certain time intervals within the sequence. In be-
tween, we apply a novel algorithm to interpolate calibration parameters
for each frame.

More formally, let = …S S S{ , , }n1 represent all n handheld video se-
quences, with ∈ …s j j N( ), {1, , }i denoting the jth frame of video sequence

∈S Si . Furthermore, let’s define a feature in an image S j( )i as:

� �= ∈ ∈f x d x dk k k k k( ) { ( ), ( )}, ( ) , ( )j j j j j
d2 (1)

where x k( )j corresponds to the 2D position of a feature k in frame S j( )i
and d k( )j represents the descriptor of feature f k( )j in space d. As we

are using SIFT features [20], the space size of the descriptor is always
set to =d 128.

We estimate the cameras’ poses by applying SfM on a small subset of
frames n m· (with ⊂m N ) from every data set, denoted as keyframes,
typically one per second. The keyframe poses are then used as a re-
ference for performing a custom interpolation process for the rest of the
intermediate frames. We exploit the fact that every keyframe has very
accurate 2D↔ 3D correspondences, computed during the triangulation
and bundle adjustment process of the SfM pipeline. If ′S j( )i and +S j( 1)i
represent a keyframe and the following frame in a sequence ∈S Si , the
first step towards finding the camera pose of +s j( 1)i is to compute
successive 2D matches between the two frames. We use the Nearest
neighbour search (NNS) matching approach [21] and the filtering
methods introduced by Moulon et al. [22].

In the second step, when all successful matches have been found for
frame +S j( 1)i , every feature +f k( )j 1 will have a valid match ′f k( )j in
frame ′S j( )i , which is known to correspond to a 3D point in the re-
construction. The updated 2D↔ 3D correspondences are then used as
an input to a PnP algorithm for computing the camera pose for +S j( 1)i .
Depending on the 3D geometry of the scene, different PnP algorithms
can be applied. We make use of the Efficient PnP algorithm [23], a
robust approach for estimating the camera pose from a variety of planar
and non-planar 3D surfaces. The camera pose parameters of ′S j( )i are
used as an initial estimate for frame S j( )i and are further optimised.

Furthermore, our experiments showed that the translation para-
meters of the pose, computed by EPnP are highly influenced by the 2D
distribution of all successive matches for every frame, resulting to high
jumps between subsequent frames. To overcome this issue, we run a
two way pass for every frame in the sequence (except the keyframes)
and compute the final pose by applying a linear interpolation between
the two predictions, relating also the distance of the current frame to
it’s last keyframe. More formally, if →Tj

N1 and →Tj
N 1 represent the

translation parameters of a camera for frame S j( )i , the following rela-
tion should hold:

= + −→ →T T Tα α(1 )j j
N

j
N1 1

(2)

where α is a parameter that increases with the distance of the current
frame to the previous last keyframe.

4.3. Foreground segmentation

Segmentation is a crucial component in many FVV systems, which
directly affects the quality of succeeding processing steps, such as
computing the 3D shape of an object from 2D silhouettes. Obviously,
the outline of the 2D projections of objects to be reconstructed should
be estimated as accurately as possible. However, this is still a very
challenging task, which is why many systems rely on green-screen
capture. In order to investigate the suitability of latest state-of-the-art
segmentation algorithms for our purposes, we compare several up-to-
date approaches, including most recent OSVOS [24] and PSPNet [25] as
well as others such as CRF-RNN [26], VOF [27] and BVS [28]. Each
approach is assigned to one predefined category, depending on it’s ar-
chitecture and input requirements. Visual results can be seen in Fig. 2.

For numerical comparison we interactively segmented the one of
our handheld sequences using appropriate production tools and present
these results as ground-truth. With this, we consider a variety of well-
known evaluation metrics (Hamming Loss [29], Normalised Hamming
Loss [30]), but also recent complementary metrics for video object
segmentation presented in [31]. Table 1 shows the overall results of
different evaluation metrics.

From the results, it is clear that the OSVOS approach outperforms
other methods in this case of human segmentation under very chal-
lenging conditions. Even though these results might not be good enough
for many reconstruction applications, our system does not rely on very
accurate silhouettes and can produce good results even when the

Fig. 1. Proposed system.
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foreground masks include part of the background or even when part of
the body is wrongly segmented.

5. Scene reconstruction

We consider the case of having very sparse camera setups. On the
one hand, this means that MVS reconstruction techniques might fail
computing a dense point cloud covering all the subject’s surface suffi-
ciently, as the separation between cameras can be large and thus in-
formation shared between views limited. On the other hand, silhouette-
based reconstruction techniques suffer from significant occlusions in
such setups, which may result in significantly inflated volumes.
Applying voxel colour consistency in SfS helps detecting concavities

and reducing these inflations, but the colour deviation analysis might
fail when just two or three images ‘see’ a specific voxel.

As it is clear that neither MVS nor SfS may provide sufficient ac-
curacy, we propose a combined approach that benefits from the
strengths of both. First, we compute a dense point cloud using a custom
MVS system. Second we apply SfS with voxel colour consistency check
and additional input from an estimated 3D skeleton (MS-SfS). This data
is input to a fusion stage, which controls deformation of the estimated
volume, using the dense point cloud as reference. This way, our re-
sulting models preserve the detail of the dense point cloud and the
completeness of the estimated volume while avoiding inflation. Finally,
we texture the resulting mesh using the input images.

5.1. Dense point cloud generation

Dense point cloud estimation techniques normally rely on a two
stage process. Initially, a sparse point cloud is calculated through SfM,
typically using SIFT features. Secondly, a patch-based point cloud
densification algorithm, such as PMVS [32], generates the final dense
cloud. The density of the resulting 3D point cloud is directly related to
the number of cameras and amount of overlap in the images. For sparse
settings, MVS methods are less reliable and might provide inaccurate
estimates, so it is crucial to maximise the number of feature-based
points in the sparse cloud.

Instead of using SIFT features, our approach is based on the work by
Berjón et al. [33], which uses A-KAZE [34,35] in combination with
Mult-Scale Retinex image enhancement [36]. This process creates
images with high contrast that enhance dark areas, making the feature
detection easier and more reliable. The final point cloud is fed to the
MVS system proposed by Schoenberger et al. [37]. Fig. 3 compares our
result for two sequences with SIFT+PMVS.

Using the foreground masks, we can get an idea of with points be-
long to the foreground (Pf ) and to the background (Pb). However, we

Fig. 2. Qualitative object segmentation results for different state-of-the-art algorithms.

Table 1
Overall segmentation results of different evaluation metrics for each algorithm.
Accuracy increases with respect to the arrow direction. Best performances are
presented in bold.

Supervised Semi-supervised Other

Measure PSPNet CRF-RNN OSVOS VOF BVS

Hamm. Loss ↓ 12909 17155 8532 9803 11948
Norm. Hamm. Loss ↑ 0.815 0.770 0.884 0.858 0.834

J Mean M ↑ 0.846 0.775 0.889 0.885 0.835
Recall O ↑ 1.000 1.000 1.000 1.000 1.000
Decay D ↓ −0.007 −0.013 −0.004 0.0001 −0.015

F Mean M ↑ 0.942 0.874 0.939 0.954 0.893
Recall O ↑ 1.000 1.000 1.000 1.000 1.000
Decay D ↓ −0.0007 −0.005 0.020 −0.009 0.011

T Mean M ↓ 0.090 0.148 0.110 0.089 0.126

Fig. 3. Difference between using SIFT+PMVS to get a dense point cloud ((a) and (c)), and using our method ((b) and (d)) on two different sequences.
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cannot use the these masks as a binary filter, as any error in the sil-
houettes would be also introduced in the dense point cloud. Instead, we
use them to initialise both groups of points, and the final decision is
based on the estimation of Euclidean clusters of points. The foreground
point cloud, Pf , will be used later to enhance the estimated volume;
however, we can already use the background point cloud, Pb, to gen-
erate an accurate background model for our sequence.

5.2. Background model reconstruction

As most of the overlap between images is produced in the back-
ground of the scene, the density of the background point cloud Pb is
normally high. This way, we can use it to generate a static 3D model
which will enhance the visual experience of our application. Although
this point cloud is normally sufficient to generate a photo realistic
model of the background (for instance, in the Soccer sequence), it is
also possible to register more images to the model and generate an even
more complete model.

We remove noisy points using a statistical outlier removal approach
based on the assumption that when analysing the neighbourhood of a
point �∈p 3, the distribution of the euclidean distances to the rest of
the points in the neighbourhood follows a Gaussian distribution. This
way, we can remove points lying outside the standard distance devia-
tion. The final mesh is computed using Poisson surface reconstruction
(PSR) [15].

5.3. 3D skeleton estimation

We estimate a 3D skeleton of the subject in every frame by trian-
gulating a set of 2D skeletons detected in the input images (Fig. 4). This
is done using Part Affinity Fields (PAFs) [38,39] which uses a con-
volutional neural network to detect and associate the 2D joints si-
multaneously in the images. This way, for every image i we have set of
m detected skeletons = …s s s{ , , }i i

m
i

1 , each of them composed of a set of n
2D joints = …j j j{ , , }i i

n
i

1 and a set of confidence values = …c c c{ , , }i i
n
i

1 . To
filter the unwanted skeletons that PAFs might find people walking by,
or in the audience, we use the foreground masks. Moreover, in case
there is more than one performer, we apply epipolar constraints to the
scene, so we can correctly match the skeletons in different images.

The final 3D joint coordinates of each skeleton are estimated by
minimising a set over determined linear triangulation problems [40] in
the form of =A J 0k , where Jk is the 3D position of joint k in the current
skeleton. Matrix A is defined using the Direct Linear Transformation
[40] method. Thus, for every 2D joint in skeleton =i x yj, ( , )b

i
b
i

b
i , with

∈ …b n{1, , }, and a confidence value cb
i above a certain threshold λ, we

add two rows to matrix A:

=
⎡

⎣

⎢
⎢
⎢

−

−
⋮

⎤

⎦

⎥
⎥
⎥

p p

p pA
x

y
i

T
i

T

i
T

i
T

b
i

b
i

3 1

3 2

(3)

where p p p, ,i
T

i
T

i
T1 2 3 are the rows of projection matrix Pi, corresponding

to image i. The threshold λ can vary from sequence to sequence but it
must be above 70% to avoid outliers in the minimisation problem.

5.4. Multi-Source Shape-from-Silhouette (MS-SfS)

As traditional SfS techniques cannot handle concavities and suffer
from occlusions in very sparse setups, it is necessary to apply additional
space carving techniques to get closer to the real volume of the scene. In
our case, we define a carving function that is composed of three dif-
ferent terms. LetV be a shape we want to acquire, our goal is to es-
timate the volume S , represented by a set of voxels �∈p 3, such that
the difference with respect to V is minimised. Being C the set of re-
gistered images and M their corresponding foreground masks, we
threshold a carving function composed by three different scores:

F M C= ϕ ϕ ϕ sp p p p( ) ( , )· ( , )· ( , ),c sil cc skel (4)

where Mϕ p( , )sil is the main binary factor defined by the silhouettes.
To estimate the colour consistency score Cϕ p( , )cc we analyse the

colour variance of the projection of each point p onto each of the
images, assuming that the scene is lambertian. Differently to what it is
done in Image-Based Photo Hulls [41], where they use a combination of
the RGB colour channels, or in work by Collet et al. [1], where they use
the CIELAB colour space, we use the variance measured on the hue
channel of the HSV colour space. This helps us accepting less relevant
differences in saturation and value that might remain in the images
after the colour correction stage, normally due to differences in the
camera sensor or white balance, while taking decisions based only on
the difference in hue, which is the actually differentiating quantity.
Therefore, Cϕ p( , )cc will be the standard colour deviation σ of the colour
hue value that p presents when it is projected onto each image. The
colour consistency check is specifically suited for smoothing sharp
edges that might appear in sparse SfS setups, as it might be in our case.
It also makes the system more robust to noisy foreground masks that
might include part of the background.

The third score, ϕ sp( , )skel , increases with the Euclidean distance of
each voxel p to its closest bone in the skeleton. This score is specifically
good in the presence of large occlusions, where the colour consistency
might fail, as voxels far from the subject’s skeleton will be rated with a
very low score.

Fig. 5 illustrates the effect of both colour consistency and skeleton
scores. It shows an extremely inflated volume due to severe occlusions
in a sparse setup. On the left we see the estimated volume just using
only Mϕ p( , )sil , on the right, the result of applying our carving method.
Edges have been softened significantly thanks to the colour consistency
test. Moreover, a great number of voxels have been removed due to the
skeleton score.

5.5. Data fusion

This stage finally combines the independent geometry estimates
from our MVS and MS-SfS modules including the advantages of both.
Let Mv be the surface of the volume defined by S , estimated through

Fig. 4. Skeleton detected in several input images [38], and the final 3D reconstruction.
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the Marching Cubes algorithm [42]. On the other hand, we compute the
surface Mf defined by the previously obtained foreground dense point
cloud Pf (see Section 5.1) using PSR [15], and only keeping vertices
that are close to the original point cloud, removing interpolated mesh
areas. Our approach is using Mf to guide a controlled deformation of
Mv, this way, the resulting model ′Mv will have both the details captured
by the feature points and full volume completeness. This approach also
helps reducing the effect of wrongly estimated foreground masks that
might produce holes in the MS-SfS volume.

For this, we cast a ray from every vertex vi of Mf following its
normal, searching for a intersection with Mv. If found, v will move to
the point of intersection. Following the notation in [43], the set of
vertices displaced after this stage define the handle points H of our
deformation problem. The deformation regionR grows from the handle
region by iteratively searching the neighbours of each H∈v i

h : for each
R∈v j

r we assign a level that increases with number of steps we need to
take to approach a vertex of the handle. We also store which is the
closest handle vertex and its corresponding displacement vector di

h. We
can define the displacement function for each v i

r as follows:

= +
−

d
l l

l
v v n d( ) · ,j

r
j
r

j
r

i
h j

(5)

where n j
r is the normal of vertex lv ,jr is the total number of levels in the

deformation region, and lj is the current level. We reduce the possible
artifacts by remeshing to our result and by identifying and removing
isolated triangle isles and non-manifold edges and vertices. Section 6.1
presents an evaluation of the reconstruction process.

5.6. Multi-view colouring

Once the surface of the subject has been reconstructed, we colour
the resulting 3D mesh using the image blending technique proposed by
Pagés et al. [44]. This technique is able to combine the colour in-
formation provided by the different cameras seamlessly, even though
there might be over or underexposed images and differences in colour
balance. The blending function is firstly defined in the topology space
by backprojecting every facet Fi to each registered image Cj obtaining a
per-facet per-image rating Rij. This way, the higher the area of the
backprojection of Fi onto Cj, the higher Rij. However, the final rating is
smoothed using the angle between the normal of Fi and Cj, penalising
wider angles even when the camera is very close to the mesh. Besides,
we perform an occlusion test for every facet and image, similar to a z-
buffer, which avoids the inclusion of wrongly projected areas on the
textured model.

Moreover, to further improve the visual quality of our textured
models, particularly of human faces, we search for faces in all images
and determine the camera with the largest facial region. The ratings Rij

F

of the facets belonging to that detected area are significantly increased,
giving a much larger contribution to that particular camera.

To ensure smooth transitions across the mesh, each vertex vk also
gets a per-image rating rkj by averaging the ratings of all the faces that

contain it. The final colour for each point of the mesh is a weighted
average of the camera contributions, bilinearly interpolating ratings rkj.

6. Results

6.1. Reconstruction evaluation

The proposed system has been tested in several different datasets
with varying conditions: hand-held and fixed cameras, sparse and dense
camera setups, indoor and outdoor. Our system is focused on casually
captured scenes: similar outdoor sequences that present a sparse setup
of a limited number of hand-held cameras (between 6 and 9 cameras).
However, we also tested it in other more professional scenarios, such as
the Soccer sequence, provided by the Nagoya University Multi-view
Sequence database,4 which contains a denser setup of fixed cameras (up
to 20); the DancingDuo [1], which is a dense setup of 106 calibrated
and synchronised cameras in a green-screen studio with controlled
lighting conditions; and the Swift sequence, similar to the previous one,
but with only 12 cameras.

Fig. 6 shows several frames of the same sparse hand-held sequence,
in different stages of the algorithm. In the first column, the original SfS
model; in the second, our enhanced MS-SfS; in the third, the result of
the data fusion; and in the last, the textured final model. As it is possible
to see, MS-SfS deals with most the problems that SfS techniques have in
sparse camera setups. It is also possible to see how the details of the
mode are enhanced after the data fusion stage, which introduces in-
formation from the point cloud in the final model. Fig. 7 shows a very
interesting case where the hand was lost in the first reconstruction
stage, but recovered after the data fusion.

Fig. 8 shows the result of using our system in more professional
scenarios. On the left, a model of the Jonathan Swift sequence. As it is
possible to see, the data fusion is able to provide details in the face,
occluded by the wig in the original SfS. On the right, a model of the
DancingDuo [1] reconstructed only using the 53 RGB cameras pro-
vided. This dataset also contains 26 IR stereo pairs images with a
structured light pattern projected onto them. However, as our purpose
is keeping as close as possible to the average user, we do not use them
for our reconstruction.

In the absence of a ground truth, which is difficult to obtain for a
real-world dynamic scene, we attempt to measure the objective quality
of our reconstruction technique by using the Microsoft DancingDuo
sequence. This sequence is composed of a set of 53 RGB images, most of
them configured in stereo pairs. Using a sample frame mesh generated
by Collet et al. [1] as ground truth, we perform a sequence of re-
constructions reducing the number of cameras by one each iteration.
This way, we can evaluate how accurate a shape we can get when the
number of input cameras is considerably reduced. We have divided this
experiments into two: for the first one, we iteratively remove cameras
trying to preserve as much scene coverage as possible, which means
that the reconstruction benefits volume estimation over dense point
cloud estimation. For the second, we remove them prioritising camera
overlap, which in this the opposite to the previous configuration. Fig. 9
shows the result of computing the Hausdorff distance [45] between the
ground truth mesh and three different models in each case: the result of
a simple SfS process (red line) and the result of our reconstruction
system (blue line). The y-axis expresses the Hausdorff distance as a
percentage: RMS distance with respect to the global volume.

As shown in Fig. 9, our method performs best for every camera
configuration. In the first experiment we can see that the error is con-
siderably lower due to the effect of the details from the dense point
cloud, included in the fusion stage. However, as it is not possible to
estimate a point cloud when the number of cameras is below 10 (the
overlap is minimum for this camera configuration at that stage), the

Fig. 5. Result of simple SfS (left) and our MS-SfS (right), in a case with severe
occlusions.

4 http://fujii.nuee.nagoya-u.ac.jp/multiview-data/.
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error grows closer to the original SfS. Further, in the second experi-
ment, we see that with decreasing number of cameras, as SfS is less and
less able to carve a proper volume, its Hausdorff distance grows rapidly.
With our method, using the skeleton to discard superfluous voxels,
helps to reduce the error considerably.

Fig. 10 helps illustrating the differences between both approaches.
The result of three reconstructions is shown: using all the 53 images,
using 18 with experiment 1, and using 18 cameras with experiment 2. In
each case you can see the result of applying traditional SfS on the left, the
result of meshing the dense point cloud obtained through our enhanced
MVS on the centre, and the result of our data fusion technique on the
right. As it is possible to see, when we have all 53 images, the result of
meshing the dense point cloud is very accurate and the carving very
restrictive, minimising the maximum Hausdorff distance to 3–4 cm (see
Fig. 8 for a textured result). When we perform the reconstruction using
only 18 cameras with the setting of the first experiment, the maximum
Hausdorff distance of our method increases to around 9 cm (red colour,
e.g. neck) in concave areas, which are neither well covered by the dense
point cloud. This means that both inputs fail to resolve such parts suf-

ficiently. Observing Fig. 10 (c) one could guess where the cameras are
located in experiment 2, as the MVS model presents very fine detail on
the right side. However, as the carving is much worse in this case, the
final model of our method is also visually worse than in experiment 1
(with a maximum distance of around 11 cm).

Fig. 6. Three different frames of the same sequence, in four different stages of the system. From left to right: original SfS model, result of the MS-SfS, result after
fusion and final textured model.

Fig. 7. Example where one hand of the model is lost in the original SfS model
(left column), and recovered after the data fusion stage (centre column). On the
right, the final textured model.

Fig. 8. Result of using our system in two controlled scenes. The Swift sequence uses 12 cameras and the DancingDuo 53.
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6.2. Scene visualisation and examples

One of the traditional way of displaying FVV content is using view
synthesis, where in-between camera views are generated from the
nearest two (or more) camera images. With the advancement of VR/AR
technology, especially on mobile devices, new application areas are
emerging.

To display the reconstructed scenes we use several representations
depending on the targeted use. The static objects in the scene are al-
ways rendered as textured 3D mesh. Dynamic part of the FVV scene (i.e.
people) are then represented either as point cloud or textured mesh.
This results from the need of different display methods and perfor-
mance requirements and limitations of different platforms.

6.2.1. VR/AR rendering
For real-time rendering, especially in mobile VR/AR, there are

several restrictions. First is the amount of vertices various devices can
process. Here we use triangulated mesh with a texture as the data
format. Another restriction is the size of RAM in mobile devices. FVV
sequences can be very large (over 1.5 GB/s, depending on the quality
and frame-rate) and need to be loaded into memory at run-time. Due to
these restrictions we had to reduce the quality of the original meshes
and keep the number of vertices bellow 10k and texture resolution at
1K per frame. In our system, for each frame we store vertices, normals,

texture coordinates and a texture compressed for targeted platform
(DXT1, ETC1). This allows us to display our sequences on various
mobile device in real-time without length restrictions. Fig. 11 shows
some AR examples.

6.2.2. View synthesis
The basic view synthesis mode we implemented is similar to [2].

The virtual camera path is restricted to a trajectory between real
cameras. When positioned at real camera, the virtual camera V is using
extrinsic and intrinsic parameters from the selected real camera A and
the camera’s image is projected onto the dynamic geometry and static
background mesh. During the transition phase, when the user changes
the viewpoint, new parameters of the virtual camera are computed as
an interpolation between the current camera A and the destination
camera B. In the case of different image resolutions or focal lengths, we
use linear interpolation to compute virtual camera parameters. For its
virtual position and rotation we use Spherical Linear intERPolation
(SLERP).

The rendering uses as an underlying geometry a point cloud that
provides the necessary depth information but doesn’t requires colour
which comes from the original camera images. To improve the quality
we also use normals and render the point cloud as normal-oriented
quads. This has a major impact on the quality of the final rendering as
seen on Fig. 12.

Fig. 9. Hausdorff distance between ground truth
and: basic SfS (red), and our method (green).
Distance is measured with respect to the global
volume. Experiment 1 reduces the number of
cameras prioritising coverage, while experiment
2 prioritises camera overlap. (For interpretation
of the references to color in this figure legend,
the reader is referred to the web version of this
article.)

Fig. 10. Hausdorff distance measured in cm with respect to the ground truth. On the left (a), reconstruction using all 53 cameras; on the centre (b), only 18 using
experiment 1; on the right (c), 18 cameras using experiment 2.

Fig. 11. Soccer and one of our hand-held sequences seen through Microsoft HoloLens.
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The pixel’s colour is then computed using the Multi-View Colouring
stage presented in Section 5.6 adapted to real-time rendering. In our
real-time version we consider only the current frame and the two
nearest camera images (cameras A and B). The rendering pipeline is
then similar to the traditional pipeline from computer graphics for
shadow mapping, where we use cameras instead of lights. In the last
rendering pass we apply an optional post-processing effect, a screen-
space motion blur on the background geometry during the transition
phase to highlight the dynamic content (see Fig. 13).

7. Conclusion

It is highly challenging to create virtual viewpoints of a scene that
has only been recorded from a limited number of views. In vision-based
3D reconstruction systems, a large number of overlapping high-speed
high-resolution cameras, perfect calibration, synchronisation, fore-
ground segmentation and large computer processing power allow for
the acquisition of a, near to perfect quality, 3D reconstructed scene.
However, for most people access to these professional studio-quality
setups in out of reach. In this paper we presented a novel pipeline for
affordable content creation for free-viewpoint video, virtual and aug-
mented reality, which is accessible to everyone. We targeted a scenario
where only a small number of consumer-quality cameras are used but
also demonstrated the scalability of our method to professional setups,
such as in football stadiums or 3D capture studios.

Furthermore, we compared several state-of-the-art segmentation
algorithms, showing the shortcomings of the approaches to cope with
large shape variations in the human motion. In future work the quality
of the foreground segmentation could potentially be improved by in-
corporating multi-view information. We evaluated the scene re-
construction using a quantitative analysis of several challenging ex-
amples, using Microsoft’s multi-camera system [1] as ground truth. For

the latter, two different camera configurations were presented: max-
imising the scene coverage, which benefits SfS over MVS; maximising
camera overlap, which is the opposite case. These two different setup
show the different kind of possible results depending on the input data,
and give some examples of the limitations. Our method highlights the
limitations when it is pushed to very extreme scenarios with very low
scene coverage or no camera overlap. However, as our reconstruction
technique is based on the fusion of different kinds of data, it always
produces a result, even when some if this data is not available. In a real-
world scenario a camera setup would normally fall somewhere in the
middle of these two extremes.

We presented an end-to-end system to process and visualise FVV
sequences. Our lightweight system is robust and flexible and produces
high quality 3D content with a small number of cameras by combining
state-of-the-art reconstruction techniques with efficient camera pose
estimation, skeletal restraint, colour consistency and multi-view stereo
restraint techniques. Multi-source shape-from-silhouette (MS-SfS)
combined with fusion of different geometry data are the crucial com-
ponents for accurate reconstruction in sparse camera settings. Our ap-
proach produces flexible outcome for low-cost content creation for VR/
AR.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.jvcir.2018.03.012.

Fig. 13. A view synthesis example with transition frames from football scene.

Fig. 12. View synthesis example using a point cloud rendered as billboards (left) and as normal-oriented quads (right).
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